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1 Introduction
The notion of being measurable or belonging to a measure space hinges on set theory.
Some set examples are {0}, {′′𝑐𝑎𝑡”, “𝑓𝑜𝑥”, “𝑑𝑜𝑔”},R𝑝. Some typical set operations are
union, intersection, complement, belong to, and subset.

2 𝜎-algebra/field
Definition 2.1 (𝜎-algebra/field). Let Ω be a set. Then a 𝜎-algebra ℱ on Ω is a class/collection
of subsets of Ω such that

1. ∅ ∈ ℱ ,
2. (closed to complement) 𝐴 ∈ ℱ =⇒ 𝐴c ∈ ℱ ,
3. (closed to countable union) Given a countable collection of elements in ℱ , i.e.,

𝐴1, 𝐴2, · · · ∈ ℱ ,
⋃︀∞

𝑛=1 𝐴𝑛 ∈ ℱ .

Remark 2.2. 1. A 𝜎-algebra is also closed under countable intersection.
2. intersection of any arbitrary collection of 𝜎- algebras on a set is a 𝜎-algebra.

If we replace the countability condition with finiteness, then a 𝜎-algebra becomes
an algebra.

Definition 2.3 (Algebra/field). Let Ω be a set. Then an algebra ℱ on Ω is a class/collection
of subsets of Ω such that

1. ∅ ∈ ℱ ,
2. (closed to complement) 𝐴 ∈ ℱ =⇒ 𝐴c ∈ ℱ ,
3. (closed to finite union) Given a finite collection of elements in ℱ , i.e., 𝐴1, 𝐴2, . . . , 𝐴𝑚 ∈

ℱ ,
⋃︀𝑚

𝑛=1 𝐴𝑛 ∈ ℱ .

We can generate a 𝜎-algebra from a set as follows:

Definition 2.4 (𝜎-algebra generated by 𝒜). Let Ω be a set and 𝒜 be a collection of subsets
of Ω. The smallest 𝜎-algebra containing 𝒜 is called the 𝜎-algebra generated by 𝒜, and
is denoted by 𝜎(𝒜).

An important class of 𝜎-algebra is the Borel 𝜎-algebra.

Definition 2.5 (Borel 𝜎-algebra). Let Ω be a set endowed with a topology. The Borel
𝜎-algebra on Ω, ℬ(Ω), is the 𝜎-algebra generated by the collection of open subsets of Ω.

Remark 2.6. 1. ℬ(R) is also generated by the set of all open intervals, half-open
intervals, or closed intervals.

2. ℬ(R) is also generated by the set of the intervals of the form (𝑥, ∞) or (−∞, 𝑥).
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3 Measurable/measure space
Definition 3.1 (Measurable space). A pair (Ω, ℱ) is said to be a measurable space if ℱ is a
𝜎-algebra.

Definition 3.2 (Measure). Let (Ω, ℱ) be a measurable space. A measure 𝜇 on this space
is a set function such that

1. 𝜇 : ℱ → [0, ∞],
2. 𝜇(∅) = 0,
3. (Countable additivity) If a countable collection of disjoint elements in ℱ , 𝐴1, 𝐴2, · · · ∈

ℱ , then 𝜇(
⋃︀∞

𝑛=1 𝐴𝑛) =
∑︀∞

𝑛=1 𝜇(𝐴𝑛).

Definition 3.3 (Measure space). The triple (Ω, ℱ , 𝜇) is called a measure space.

Remark 3.4. Let (Ω, ℱ , 𝜇) be a measure space.

1. (Monotonicity) ∀ 𝐴, 𝐵 ∈ ℱ such that 𝐴 ⊆ 𝐵, we have 𝜇(𝐴) ≤ 𝜇(𝐵).
2. (Countable subadditivity) ∀ 𝐴1, 𝐴2, · · · ∈ ℱ , we have 𝜇(

⋃︀∞
𝑛=1 𝐴𝑛) ≤

∑︀∞
𝑛=1 𝜇(𝐴𝑛).

Now, think about how you would define a measure on R3. It would require a
measurable space (e.g., (R3, ℬ

(︀
𝑅3)︀

) and Lebesgue measure which we will cover later in
the course.

Why do we need measurable spaces to define measures? Can’t we just define
measures on 2Ω? By Banach-Tarski paradox, if we define a measure 𝜇 on R3, then we
can show that 𝜇(·) is either 0 or ∞ or even undefined! See the figure 1 for more details..
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Figure 1 Visualization of Banach-Tarski paradox (credit: Danielle Tsao).
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1 Properties of 𝜎-algebra
Last time we introduced 𝜎-algebra. Let’s remark on some important properties of it.

Remark 1.1. 1. Ω ∈ ℱ .
2. A 𝜎-algebra is also closed under countable intersection.
3. intersection of any arbitrary collection of 𝜎- algebras on a set is a 𝜎-algebra.

We can generate a 𝜎-algebra from a set as follows:

Definition 1.2 (𝜎-algebra generated by 𝒜). Let Ω be a set and 𝒜 be a collection of subsets
of Ω. The smallest 𝜎-algebra containing 𝒜 is called the 𝜎-algebra generated by 𝒜, and
is denoted by 𝜎(𝒜).

Proof. The proof of existence follows three steps:

1. There exists at least one 𝜎-algebra containing 𝒜: the power set 2Ω.
2. We can denote all 𝜎-algebra ℬ𝑖 containing 𝒜 as {ℬ𝑖 : 𝑖 ∈ ℐ}.
3. We know that ⋂︀

𝑖∈ℐ ℬ𝑖 (i) is still a 𝜎-algebra, (ii) still contains 𝒜, and (iii) the
smallest 𝜎-algebra containing 𝒜.

Definition 1.3 (Topological space). In point-set topology, a topological space (Ω, 𝜏) is one
such that

1. Ω is a set
2. 𝜏 is a class of subsets in Ω such that (a) ∅, Ω ∈ 𝜏 , (b) closed to arbitrary union,

and (c) closed to finite intersection.

An important class of 𝜎-algebra is the Borel 𝜎-algebra. The definition in the textbook
is

Definition 1.4 (Borel 𝜎-algebra). Let Ω be a set endowed with a topology. The Borel
𝜎-algebra on Ω, ℬ(Ω), is the 𝜎-algebra generated by the collection of open subsets of Ω.

And the definition in the lecture is

Definition 1.5 (Borel 𝜎-algebra). Let (Ω, 𝜏) be a topological space, then Borel 𝜎-algebra of
(Ω, 𝜏) is 𝜎(𝜏).

Remark 1.6. 1. ℬ(R) is also generated by the set of all open intervals, half-open
intervals, or closed intervals.

2. ℬ(R) is also generated by the set of the intervals of the form (𝑥, ∞) or (−∞, 𝑥).
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2 Properties of measurable/measure space
Last time we also introduced measurable space and measure. Let’s remark on some
important properties of them.

Definition 2.1 (Probability measure and Probability space). If a measure 𝜇 on a measurable
space (Ω, ℱ) satisfies 𝜇(Ω) = 1, then it is called a probability measure. The triple
(Ω, ℱ , 𝜇) is then called a probability space. In this case, elements of ℱ are usually called
events.

Remark 2.2. Let (Ω, ℱ , 𝜇) be a measure space.

1. (Monotonicity) ∀ 𝐴, 𝐵 ∈ ℱ such that 𝐴 ⊆ 𝐵, we have 𝜇(𝐴) ≤ 𝜇(𝐵).
2. (Countable subadditivity) ∀ 𝐴1, 𝐴2, · · · ∈ ℱ , we have 𝜇(⋃︀∞

𝑛=1 𝐴𝑛) ≤
∑︀∞

𝑛=1 𝜇(𝐴𝑛).
3. (Continuity I) Let 𝐴1, 𝐴2, · · · ∈ ℱ be a collection of increasing events in ℱ (i.e.,

𝐴1 ⊆ 𝐴2 ⊆ · · · ), then 𝜇(⋃︀∞
𝑛=1 𝐴𝑛) = lim𝑛→∞ 𝜇(𝐴𝑛).

4. (Continuity II) Let 𝐴1, 𝐴2, · · · ∈ ℱ be a collection of decreasing events in ℱ (i.e.,
𝐴1 ⊇ 𝐴2 ⊇ · · · ) and 𝜇(Ω) < ∞ (e.g., probability measure), then 𝜇(⋂︀∞

𝑛=1 𝐴𝑛) =
lim𝑛→∞ 𝜇(𝐴𝑛).

3 Well-approximation theorem
Let (Ω, ℱ , 𝜇) be a measure space. If 𝜇 is a probability measure, then any element of ℱ
can be arbitrarily well-approximated by elements of any generating algebra.

Theorem 3.1 (Well approximation of a 𝜎-algebra that generates it). Let (Ω, ℱ , 𝜇) be a probability
space. Let 𝒜 be an algebra that generates ℱ . Then for any 𝐴 ∈ ℱ and any 𝜖 > 0, there
is some 𝐵 ∈ 𝒜 such that 𝜇(𝐴Δ𝐵) < 𝜖, where 𝐴Δ𝐵 is the symmetric difference of 𝐴
and 𝐵.

Proof. Define 𝒢 := {𝐴 ∈ ℱ : 𝐴 can be 𝜖-approximated by 𝒜}. Thus, by definition,
𝒢 ⊆ ℱ and 𝒜 ⊆ 𝒢. We can show that 𝒢 is a 𝜎-algebra (see the proof in the textbook).
Thus, 𝒢 ⊇ 𝜎(𝒜) = ℱ . Thus, 𝒢 = ℱ .

4 Motivating Caratheodory’s extension theorem
How can we define “measure" of R? We have seen why Banach-Tarski paradox says
we cannot define 𝜇 over 2R. Consider 𝒫 := {(𝑎, 𝑏] : 𝑎 ≤ 𝑏 ∈ R ∪ {−∞, ∞}}. Let
𝜇((𝑎, 𝑏]) := 𝑏 − 𝑎. If we want to extend from (R, 𝒫, 𝜇) to (R, 𝜎(𝒫), �̃�), this will be
Caratheodory’s extension theorem. Specifically, we want

• ∀𝐴 ∈ 𝒫, �̃�(𝐴) = 𝜇(𝐴).
• �̃� is a measure of support 𝜎(𝒫).
• �̃� is the unique extension from (R, 𝒫, 𝜇).
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1 Big picture
We aim to define a measure on R. Given the Banach-Tarski paradox, we CANNOT
define a measure over 2R. Instead, we aim to define a measure over a subset of 2R,
which are called the class of measurable sets. To achieve this, we need Caratheodory
extension theorem. It has five steps.

2 Step 1: Dynkin’s 𝜋-𝜆 theorem
The first step is to show that if there exists such an extension from (𝒫, 𝜇) to (𝜎(𝒫), �̃�),
it must be unique. Intuitively speaking, if we want to measure something on 𝜎(𝒫), there
should be only one way to measure it. To show this, we use Dynkin’s 𝜋-𝜆 theorem.

Definition 2.1 (𝜋-system). Let Ω be a set. A class 𝒫 of subsets of Ω is a 𝜋-system if it is
closed under finite intersection, i.e., ∀𝐴, 𝐵 ∈ 𝒫, we have 𝐴 ∩ 𝐵 ∈ 𝒫.

Example 2.2. {(𝑎, 𝑏) : 𝑎 ≤ 𝑏 ∈ R*} is a 𝜋-system.

Definition 2.3 (𝜆-system). Let Ω be a set. A class ℒ of subsets of Ω is a 𝜆-system if

1. Ω ∈ ℒ,
2. closed under complement,
3. closed under countable disjoint union

Lemma 2.4. If a 𝜆-system is also a 𝜋-system, then it is a 𝜎-algebra.

Proof. Skipped in the lecture. See the textbook.

Theorem 2.5 (Dynkin’s 𝜋-𝜆 theorem). Let Ω be a set. Let 𝒫 be a 𝜋-system of subsets of Ω,
and let ℒ ⊇ 𝒫 be a 𝜆-system of subsets of Ω. Then ℒ ⊇ 𝜎(𝒫).

Proof. Skipped in the lecture. See the textbook.

Theorem 2.6 (Unique extension). Consider a 𝜋-system 𝒫 and two measures 𝜇1, 𝜇2 on the
same measurable space (Ω, 𝜎(𝒫)). Then, as long as,

1. 𝜇1, 𝜇2 agree on 𝒫, i.e., ∀𝐴 ∈ 𝒫, 𝜇1(𝐴) = 𝜇2(𝐴).
2. (𝜎-finiteness) ∃ a sequence 𝐴1, 𝐴2, · · · ∈ 𝒫 such that 𝐴𝑛 increases to Ω and 𝜇1, 𝜇2

are both finite on every 𝐴𝑛,

𝜇1, 𝜇2 agree on 𝜎(𝒫).
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Proof. Consider any 𝐴 ∈ 𝒫 such that 𝜇1(𝐴) = 𝜇2(𝐴) < ∞. Let

ℒ := {𝐵 ∈ 𝜎(𝒫) : 𝜇1(𝐴 ∩ 𝐵) = 𝜇2(𝐴 ∩ 𝐵)}.

We claim that ℒ is a 𝜋-system containing 𝒫. Clearly, Ω ∈ ℒ. To show the closeness
under complement, consider any 𝐵 ∈ ℒ, then

𝜇1(𝐴 ∩ 𝐵c) = 𝜇1(𝐴) − 𝜇1(𝐴 ∩ 𝐵) if 𝜇1(𝐴) < ∞
= 𝜇2(𝐴) − 𝜇2(𝐴 ∩ 𝐵)
= 𝜇2(𝐴 ∩ 𝐵c) if 𝜇1(𝐴) < ∞.

So 𝐵c ∈ ℒ. Finally, to show the closeness under countable disjoint union, consider a
countable disjoint collection of elements 𝐵1, 𝐵2, . . . in ℒ. Let 𝐵 :=

⋃︀∞
𝑛=1 𝐵𝑛. Then,

𝜇1(𝐴 ∩ 𝐵) = 𝜇1

(︃
𝐴 ∩

∞⋃︁
𝑛=1

𝐵𝑛

)︃

= 𝜇1

(︃ ∞⋃︁
𝑛=1

(𝐴 ∩ 𝐵𝑛)
)︃

=
∞∑︁

𝑛=1
𝜇1(𝐴 ∩ 𝐵𝑛) ∵ countable additivity

=
∞∑︁

𝑛=1
𝜇2(𝐴 ∩ 𝐵𝑛)

= 𝜇2(𝐴 ∩ 𝐵) ∵ countable additivity.

By Dynkin’s 𝜋-𝜆 theorem, 𝜎(𝒫) ⊆ 𝑚𝑐𝐿. By construction of ℒ, ℒ ⊆ 𝜎(𝒫). So 𝜎(𝒫) = ℒ.
So far, we have proven for every 𝐴 ∈ 𝒫 and 𝐵 ∈ 𝜎(𝒫) such that 𝜇1(𝐴) < ∞ and

𝜇1(𝐴 ∩ 𝐵) = 𝜇2(𝐴 ∩ 𝐵). By the given conditions, there exists an increasing sequence
𝐴𝑛 → Ω such that 𝜇1(𝐴𝑛) < ∞. So for any 𝐵 ∈ 𝜎(𝒫),

𝜇1(𝐵) = lim
𝑛→∞

𝜇1(𝐴 ∩ 𝐵) = lim
𝑛→∞

𝜇2(𝐴 ∩ 𝐵) = 𝜇2(𝐵).

We continue to prove Caratheodory extension theorem. We first want to extend
(𝒫, 𝜇) to

(︁
2Ω, 𝜇*

)︁
for some 𝜇* and then restrict it to

(︁
ℱ𝜇*

, 𝜇*
)︁

where ℱ𝜇* is defined
by 𝜇*. Caratheodory showed that (1) ℱ𝜇* is a 𝜎-algebra and (2) 𝜇* is a measure on
ℱ𝜇* . Then,

(︁
Ω, ℱ𝜇*

, 𝜇*
)︁

is a measure space that extends (𝒫, 𝜇).
We will show how to construct 𝜇* over 2Ω in the next lecture. This time, we

will show
(︁
Ω, ℱ𝜇*

, 𝜇*
)︁

is a measure space by as long as 𝜇* is an outer measure, then(︁
Ω, ℱ𝜇*

, 𝜇*
)︁

is a measure space.
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3 Step 2: Outer measure
Definition 3.1 (Outer measure). Let Ω be a set and to 2Ω is the power set. A set function
𝜑 : 2Ω → [0, ∞] is called an outer measure if

1. 𝜑(∅) = 0,
2. (monotonicity) If 𝐴 ⊆ 𝐵, then 𝜑(𝐴) ≤ 𝜑(𝐵),
3. (subadditivity) If 𝐴1, 𝐴2, · · · ∈ Ω, 𝜑(

⋃︀∞
𝑛=1 𝐴𝑛) ≤

∑︀∞
𝑛=1 𝜑(𝐴𝑛).

How to define the 𝜎-algebra induced by 𝜑, ℱ𝜑? Let’s use the definition of 𝜑-
measurability.

Definition 3.2 (𝜑-measurable). If 𝜑 is an outer measure on a set Ω, a subset 𝐴 ⊆ Ω is
called 𝜑-meausrable if for all 𝐵 ∈ Ω,

𝜑(𝐵) = 𝜑(𝐵 ∩ 𝐴) + 𝜑(𝐵 ∩ 𝐴c).

Remark 3.3. A subset A is 𝜑-measurable if and only if 𝜑(𝐵) ≥ 𝜑(𝐵 ∩ 𝐴) + 𝜑(𝐵 ∩ 𝐴c).

Theorem 3.4 (Caratheodory). Let Ω be a set and 𝜑 be an outer measure on Ω. Let ℱ𝜑

be the collection of all 𝜑-measurable subsets of Ω. Then, ℱ𝜑 is a 𝜎-algebra and 𝜑 is a
measure on ℱ𝜑, i.e.,

(︁
Ω, ℱ𝜑, 𝜑

)︁
is a measure space.

Proof. The first step is to show ℱ𝜑 is an algebra. To show ∅ ∈ ℱ𝜑, we want to
show ∅ is 𝜑-measurable. Since ∀𝐸 ⊆ Ω, 𝜑(𝐸 ∩ ∅) = 𝜑(∅) = 0 and 𝜑(𝐸 ∩ ∅c) =
𝜑(𝐸 ∩ Ω) = 𝜑(𝐸), we have 𝜑(𝐸) = 0 + 𝜑(𝐸) = 𝜑(𝐸 ∩ ∅) + 𝜑(𝐸 ∩ ∅c). Next, to
show ℱ𝜑 is closed to complements, consider any 𝐴 ∈ ℱ𝜑. Then, for any 𝐸 ⊆ Ω,
𝜑(𝐸) = 𝜑(𝐸 ∩ 𝐴) + 𝜑(𝐸 ∩ 𝐴c) = 𝜑(𝐸 ∩ (𝐴c)c) + 𝜑(𝐸 ∩ 𝐴c), implying that 𝐴c ∈ ℱ𝜑.
Finally, to show ℱ𝜑 is closed to finite union, consider any 𝐴, 𝐵 ∈ ℱ𝜑. Let 𝐷 := 𝐴 ∪ 𝐵.
Then,

𝜑(𝐸 ∩ 𝐷) + 𝜑(𝐸 ∩ 𝐷c) = 𝜑(𝐸 ∩ (𝐴 ∪ 𝐵)) + 𝜑(𝐸 ∩ (𝐴 ∪ 𝐵)c)
= 𝜑(𝐸 ∩ (𝐴 ∪ (𝐵 − 𝐴))) + 𝜑(𝐸 ∩ 𝐴c ∩ 𝐵c)
= 𝜑(𝐸 ∩ (𝐴 ∪ (𝐵 ∩ 𝐴c))) + 𝜑(𝐸 ∩ 𝐴c ∩ 𝐵c)
= 𝜑((𝐸 ∩ 𝐴) ∪ (𝐸 ∩ 𝐵 ∩ 𝐴c)) + 𝜑(𝐸 ∩ 𝐴c ∩ 𝐵c)
≤ 𝜑(𝐸 ∩ 𝐴) + 𝜑(𝐸 ∩ 𝐵 ∩ 𝐴c) + 𝜑(𝐸 ∩ 𝐴c ∩ 𝐵c)
= 𝜑(𝐸 ∩ 𝐴) + 𝜑(𝐸 ∩ 𝐴c) ∵ B is 𝜑-measurable
= 𝜑(𝐸).

On the other hand, by monotonicity,

𝜑(𝐸) = 𝜑((𝐸 ∩ 𝐷) ∪ (𝐸 ∩ 𝐷c)) ≤ 𝜑(𝐸 ∩ 𝐷) + 𝜑(𝐸 ∩ 𝐷c).

So 𝜑(𝐸) = 𝜑(𝐸 ∩ 𝐷) + 𝜑(𝐸 ∩ 𝐷c).
We will continue the rest of the proof in the next lecture.
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1 Continuing step 2
Recall the Caratheodory theorem from last time,

Theorem 1.1 (Caratheodory). Let Ω be a set and 𝜑 be an outer measure on Ω. Let ℱ𝜑

be the collection of all 𝜑-measurable subsets of Ω. Then, ℱ𝜑 is a 𝜎-algebra and 𝜑 is a
measure on ℱ𝜑, i.e.,

(︁
Ω, ℱ𝜑, 𝜑

)︁
is a measure space.

Proof. Step 1 is show that ℱ𝜑 is an algebra. We have done this last time. Step
2 is to show 𝜑 is finite-additive over ℱ𝜑. In other words, for any 𝐸 ⊆ Ω and any
disjoint 𝐴1, 𝐴2, . . . , 𝐴𝑛 ∈ ℱ𝜑, 𝜑(𝐸 ∩ (𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑛)) = ∑︀𝑛

𝑖=1 𝜑(𝐸 ∩ 𝐴𝑖). Define
𝐵𝑛 := ⋃︀𝑛

𝑖=1 𝐴𝑖. Then,

𝜑(𝐸 ∩ 𝐵𝑛) = 𝜑(𝐸 ∩ 𝐵𝑛 ∩ 𝐴𝑛) + 𝜑(𝐸 ∩ 𝐵𝑛 ∩ 𝐴c
𝑛) ∵ 𝐴𝑛 is 𝜑-measurable

= 𝜑(𝐸 ∩ 𝐴𝑛) + 𝜑(𝐸 ∩ 𝐵𝑛−1)
= 𝜑(𝐸 ∩ 𝐴𝑛) + 𝜑(𝐸 ∩ 𝐵𝑛−1 ∩ 𝐴𝑛−1) + 𝜑

(︀
𝐸 ∩ 𝐵𝑛−1 ∩ 𝐴c

𝑛−1
)︀
∵ 𝐴𝑛−1 is 𝜑-measurable

= 𝜑(𝐸 ∩ 𝐴𝑛) + 𝜑(𝐸 ∩ 𝐴𝑛−1) + 𝜑(𝐸 ∩ 𝐵𝑛−2)
...

=
𝑛∑︁

𝑖=1
𝜑(𝐸 ∩ 𝐴𝑖)

Step 3 is to show that if 𝐴1, 𝐴2, . . . is a increasing sequence of 𝜑-measurable sets
to 𝐴 ⊆ Ω (𝐴 is not necessarily 𝜑-measurable), then for any 𝐸 ⊆ Ω, 𝜑(𝐸 ∩ 𝐴) ≤
lim𝑛→∞ 𝜑(𝐸 ∩ 𝐴𝑛). Define 𝐵𝑛 := 𝐴𝑛 − 𝐴𝑛−1 = 𝐴𝑛 ∩ (𝐴𝑛−1)c. We have the following
observations:

1. 𝐵𝑛’s are disjoint and in ℱ𝜑.

2. 𝐴𝑛 = ⋃︀𝑛
𝑖=1 𝐵𝑖.

3. 𝜑 is finite additive over ℱ𝜑 so for any 𝐸 ⊆ Ω

𝜑(𝐸 ∩ 𝐴𝑛) = 𝜑

(︃
𝐸 ∩

(︃
𝑛⋃︁

𝑖=1
𝐵𝑖

)︃)︃
=

𝑛∑︁
𝑖=1

𝜑(𝐸 ∩ 𝐵𝑖).
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Now, lim𝑛→∞ 𝜑(𝐸 ∩ 𝐴𝑛) = lim𝑛→∞
∑︀𝑛

𝑖=1 𝜑(𝐸 ∩ 𝐵𝑖) = ∑︀∞
𝑖=1 𝜑(𝐸 ∩ 𝐵𝑖). Thus,

𝜑(𝐸 ∩ 𝐴) = 𝜑

(︃
𝐸 ∩

(︃ ∞⋃︁
𝑖=1

𝐵𝑖

)︃)︃

= 𝜑

(︃ ∞⋃︁
𝑖=1

(𝐸 ∩ 𝐵𝑖)
)︃

≤
∞∑︁

𝑖=1
𝜑(𝐸 ∩ 𝐵𝑖)

= lim
𝑛→∞

𝜑(𝐸 ∩ 𝐴𝑛).

Step 4 is to show that ℱ𝜑 is a 𝜎-algebra (i.e., ℱ𝜑 is closed to countable union). Let
𝐴1, 𝐴2, · · · ∈ ℱ𝜑, we want to show 𝐴 := ⋃︀∞

𝑛=1 𝐴𝑛 is 𝜑-measurable. For any given 𝑛,
define 𝐵𝑛 := ⋃︀𝑛

𝑖=1 𝐴𝑖. Then, for any 𝐸 ⊆ Ω, since 𝐵𝑛 ∈ ℱ𝜑 from step 1 (ℱ𝜑 is closed to
finite union), 𝜑(𝐸) = 𝜑(𝐸 ∩ 𝐵𝑛)+𝜑(𝐸 ∩ 𝐵c

𝑛). Since 𝐵𝑛 = ⋃︀𝑛
𝑖=1 𝐴𝑖 ⊆ 𝐴, 𝐸∩𝐵c

𝑛 ⊇ 𝐸∩𝐴c,
and 𝜑(𝐸 ∩ 𝐵𝑛) ≥ 𝜑(𝐸 ∩ 𝐴c) by monotonicity. So 𝜑(𝐸) ≥ 𝜑(𝐸 ∩ 𝐵𝑛) + 𝜑(𝐸 ∩ 𝐴c).

To finish proving ℱ𝜑 is a 𝜎-algebra, by applying step 3 to 𝐵𝑛, 𝜑(𝐸 ∩ 𝐴) ≤
lim𝑛→∞ 𝜑(𝐸 ∩ 𝐵𝑛). So, 𝜑(𝐸) ≥ 𝜑(𝐸 ∩ 𝐴) + 𝜑(𝐸 ∩ 𝐴c) by taking the limit on both
sides. On the other hand, 𝜑(𝐸) = 𝜑((𝐸 ∩ 𝐴) ∪ (𝐸 ∩ 𝐴c)) ≤ 𝜑(𝐸 ∩ 𝐴) + 𝜑(𝐸 ∩ 𝐴c).
Thus, 𝜑(𝐸) = 𝜑(𝐸 ∩ 𝐴) + 𝜑(𝐸 ∩ 𝐴c), implying 𝐴 is 𝜑-measurable, and thus in ℱ𝜑.
Thus, ℱ𝜑 is a 𝜎-algebra.

Step 5 is to show 𝜑 is a measure over ℱ𝜑, i.e. 𝜑 is countable additive. Consider a
countable disjoint collection 𝐴1, 𝐴2, · · · ∈ ℱ𝜑. Define 𝐵𝑛 := ⋃︀𝑛

𝑖=1 𝐴𝑖 and 𝐵 := ⋃︀∞
𝑖=1 𝐴𝑖

such that 𝐵𝑛’s increase to 𝐵 which is in ℱ𝜑 from step 4. Thus,

𝜑(𝐵) ≥ 𝜑(𝐵𝑛) =
𝑛∑︁

𝑖=1
𝜑(𝐴𝑖),

implying that 𝜑(𝐵) ≥
∑︀∞

𝑖=1 𝜑(𝐴𝑖) by taking the limit on both sides. The first inequality
follows from monotonicity. The first equality follows from finite additivity (set 𝐸 = Ω in
step 2). On the other hand, the countable subadditivity implies 𝜑(𝐵) = 𝜑(⋃︀∞

𝑖=1 𝐴𝑖) ≤∑︀∞
𝑖=1 𝜑(𝐴𝑖). So 𝜑(𝐵) = ∑︀∞

𝑖=1 𝜑(𝐴𝑖).

2 Step 3: Construction of 𝜇*

The final step to prove Caratheodory extension theorem is to construct an outer measure
𝜇* on 2Ω. Let’s also fully state the theorem here.

Theorem 2.1 (Caratheodory extension theorem). If (𝒜, 𝜇) is a tuple such that

1. 𝒜 is an algebra of subsets of Ω.
2. 𝜇 is a pre-measure over 𝒜, i.e.

(a) 𝜇 : 𝒜 → [0, ∞],
(b) 𝜇(∅) = 0,
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(c) (countable additivity over an algebra) For any disjoint 𝐴1, 𝐴2, · · · ∈ 𝒜, as
long as

⋃︀∞
𝑛=1 𝐴𝑛 ∈ 𝒜, then 𝜇(⋃︀∞

𝑛=1 𝐴𝑛) = ∑︀∞
𝑛=1 𝜇(𝐴𝑛),

then there exists an extension of (Ω, 𝒜, 𝜇) to (Ω, 𝜎(𝒜), �̃�) such that the latter is a
measure space.

In addition, if there exists a sequence 𝐴𝑖 ∈ 𝒜 such that Ω = ⋃︀∞
𝑖=1 𝐴𝑖 and 𝜇(𝐴𝑖) < ∞

(i.e., 𝜇 is 𝜎-finite), then the extension above is unique.

Proof. As stated before, it remains to construct an outer measure 𝜇* such that 𝜇* = 𝜇
over 𝒜. For any 𝐴 ∈ 2Ω, define

𝜇*(𝐴) := inf
{︃ ∞∑︁

𝑖=1
𝜇(𝐴𝑖) : 𝐴𝑖 ∈ 𝒜, 𝐴 ⊆

∞⋃︁
𝑖=1

𝐴𝑖

}︃
.

So �̃� in the theorem statement is 𝜇* restricted to 𝜎(𝒜).
Step 1 is to show 𝜇* is an outer measure.

• Since 𝜇*(∅) ≤ 𝜇(∅) = 0 and 𝜇*(∅) ≥ 0 trivially, 𝜇*(∅) = 0.
• For any 𝐴 ⊆ 𝐵 ⊆ Ω, 𝜇*(𝐴) ≤ 𝜇*(𝐵) since any cover of 𝐵 is a cover of 𝐴.
• For any 𝐴1, 𝐴2, · · · ⊆ Ω, let 𝐴 := ⋃︀∞

𝑖=1 𝐴𝑖. By the definition of infimum, fix
an 𝜖 > 0 and for each 𝑖, let {𝐴𝑖𝑗}∞

𝑗=1 be a collection of elements in 𝒜 such that
𝐴𝑖 ⊆ ∪𝑗𝐴𝑖𝑗 and ∑︀𝑗 𝜇(𝐴𝑖𝑗) ≤ 𝜇*(𝐴𝑖)+𝜖2−𝑖. Then, 𝐴 = ∪𝑖𝐴𝑖 ⊆ ∪𝑖 ∪𝑗 𝐴𝑖𝑗 , implying
that

𝜇*(𝐴) ≤
∞∑︁
𝑖

∞∑︁
𝑗

𝜇(𝐴𝑖𝑗)

≤
∞∑︁
𝑖

(︁
𝜇*(𝐴𝑖) + 𝜖2−𝑖

)︁
=

∞∑︁
𝑖

𝜇*(𝐴𝑖) + 𝜖.

Since 𝜖 is arbitrary, 𝜇*(𝐴) ≤
∑︀∞

𝑖 𝜇*(𝐴𝑖).
Step 2 is to show 𝜇* is an extension of 𝜇: i.e., for any 𝐴 ∈ 𝒜, 𝜇*(𝐴) = 𝜇(𝐴). Check

Lemma 1.5.3. in the textbook.
Step 3 is to show ℱ𝜇* ⊇ 𝒜. For any 𝐴 ∈ 𝒜 and any 𝐸 ⊆ Ω, let 𝐴1, 𝐴2, . . . be

any sequence of elements of 𝒜 that cover 𝐸. Then {𝐴𝑖 ∩ 𝐴}∞
𝑖=1 covers 𝐸 ∩ 𝐴 and

{𝐴𝑖 ∩ 𝐴c}∞
𝑖=1 covers 𝐸 ∩ 𝐴c. Thus,

𝜇*(𝐸 ∩ 𝐴) + 𝜇*(𝐸 ∩ 𝐴c) ≤
∞∑︁

𝑖=1
𝜇(𝐴𝑖 ∩ 𝐴) +

∞∑︁
𝑖=1

𝜇(𝐴𝑖 ∩ 𝐴c)

=
{︃ ∞∑︁

𝑖=1
𝜇(𝐴𝑖 ∩ 𝐴) + 𝜇(𝐴𝑖 ∩ 𝐴c)

}︃

=
∞∑︁

𝑖=1
𝜇(𝐴𝑖) ∵ countable additivity of 𝜇.
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By the definition of infimum, 𝜇*(𝐸) ≥ 𝜇*(𝐸 ∩ 𝐴) + 𝜇*(𝐸 ∩ 𝐴c). On the other hand,
by the subadditivity of 𝜇*, 𝜇*(𝐸) ≤ 𝜇*(𝐸 ∩ 𝐴) + 𝜇*(𝐸 ∩ 𝐴c), so 𝜇*(𝐸) = 𝜇*(𝐸 ∩ 𝐴) +
𝜇*(𝐸 ∩ 𝐴c). Therefore, 𝐴 ∈ ℱ𝜇* by definition, and 𝒜 ⊆ ℱ𝜇* .

The addition part of the theorem is proved by the Dynkin’s 𝜋-𝜆 system and the
unique extension theorem in the last lecture.

Remark 2.2. In the theorem statement, 𝜎(𝐴) = ℱ𝜇* and �̃� = 𝜇*.
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1 Lebesgue measure space on 𝑅1

Let 𝒜 be the set of all subsets in R1 such that they are finite disjoint unions of half-open
intervals of (𝑎, 𝑏] ∩R where −∞ ≤ 𝑎 ≤ 𝑏 ≤ ∞. Then, we know 𝒜 is an algebra and 𝛼
generates the Borel 𝜎-algebra of R.

Define 𝜆 : 𝒜 → R as the measurement of the length of an element in 𝒜. Then 𝜆 is
a 𝜎-finite measure on 𝒜.

2 Completion of 𝜎-algebra in a measure space
In probability theory, we wish to have: as long as 𝐴 ∈ ℱ such that P(𝐴) = 0, then all
the subsets of 𝐴 are in ℱ . A measure/probability space is complete if it satisfies the
property above.

For example,
(︁
R, ℬ(R), 𝜆

⃒⃒
ℬ(R)

)︁
is not complete but

(︁
R, ℱ𝜆*

, 𝜆
⃒⃒
ℱ𝜆*

)︁
is complete.

Proposition 2.1. Given any measure space (Ω, ℱ , 𝜇), we can extend it to a complete
measure space (Ω, ℱ ′, 𝜇′) by applying Caratheodory extension theorem to (ℱ , 𝜇). Note
that ℱ ⊆ ℱ ′.

3 Measurable function
Recall from mathematical analysis that the (Riemann) integration is defined as some
sort of area under the function. Now we introduce the Lebesgue integration which
is more general than the Riemann integration and defined based on a measure space
(Ω, ℱ , 𝜇). It is written down as ∫︁

Ω
𝑓(𝜔)𝑑𝜇(𝜔).

Lebesgue integration requires a measurable function, so let’s talk about this idea.

Definition 3.1 (Measurable function). For two measurable spaces (Ω, ℱ), (Ω′, ℱ ′), a function
or mapping 𝑓 : Ω → Ω′ is said to be ℱ-ℱ ′ measurable if for any 𝐴 ∈ ℱ ′, 𝑓−1(𝐴) :=
{𝜔 ∈ Ω : 𝑓(𝜔) ∈ 𝐴} ∈ ℱ (i.e., 𝑓−1(ℱ ′) ⊆ ℱ).

Lemma 3.2. Let (Ω, ℱ), (Ω′, ℱ ′) be two measurable spaces and 𝑓 : Ω → Ω′ be a function.
Suppose there is a set 𝒜 ⊆ ℱ ′ that generates ℱ ′, and suppose that 𝑓−1(𝐴) ∈ ℱ for all
𝐴 ∈ 𝒜 (i.e., 𝑓−1(𝒜) ⊆ ℱ). Then 𝑓 is ℱ-ℱ ′ measurable.

Proof. Define ℬ :=
{︀
𝐵 ⊆ Ω′ : 𝑓−1(𝐵) ∈ ℱ

}︀
. It’s easy to verify that ℬ is a 𝜎-algebra.

Then, we know 𝒜 ⊆ ℬ, so ℱ ′ = 𝜎(𝒜) ⊆ ℬ (i.e., for any 𝐴 ∈ ℱ ′, 𝑓−1(𝐴) ∈ ℱ .
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Proposition 3.3. Suppose (Ω, 𝜏), (Ω′, 𝜏 ′) are two topological spaces and ℱ , ℱ ′ are their
Borel 𝜎-algebras. Then any continuous function from Ω into Ω′ is ℱ-ℱ ′ measurable.

Proof. By the definition of continuity, 𝑓−1(𝜏 ′) ⊆ 𝜏 ⊆ 𝜎 𝑜𝑓𝜏 and 𝜎(𝜏 ′) = ℱ ′. The lemma
shows 𝑓 is ℱ-ℱ ′ measurable.

3.1 Rules of measurability
How do we easily verify the measurability of a function? Here are some important
propositions.

Proposition 3.4 (Composition of measurable functions). Consider three measurable spaces
(Ω, ℱ), (Ω′, ℱ ′), (Ω′′, ℱ ′′). If two functions 𝑓, 𝑔 are ℱ-ℱ ′ and ℱ ′-ℱ ′′ measurable, then
𝑔 ∘ 𝑓 is ℱ-ℱ ′′ measurable.

Proposition 3.5 (Sum and product of measurable functions). Consider two measurable spaces
(Ω, ℱ), (R, ℬ(𝑅)). If two functions 𝑓, 𝑔 : Ω → R are ℱ-ℬ(𝑅) measurable, then 𝑓 +𝑔, 𝑓 −
𝑔, 𝑓 * 𝑔 are all measurable.

Proposition 3.6 (Left-continuous and right-continuous). Any right-continuous or left-continuous
function 𝑓 : R→ R is measurable.

Proposition 3.7 (Monotone). Any monotone function 𝑓 : R→ R is measurable.

Proposition 3.8 (Infimum and supremum). For two measurable spaces (Ω, ℱ) and (R*, ℬ(R*)),
let {𝑓𝑛}𝑛≥1 be a sequence of measurable functions from Ω to R*. Then, we have the
following:

• 𝑔 := inf𝑛≥1 𝑓𝑛 and ℎ := sup𝑛≥1 𝑓𝑛 are measurable,
• lim inf𝑛→∞ 𝑓𝑛 and lim sup𝑛→∞ 𝑓𝑛 are measurable,
• If 𝑓𝑛 → 𝑓 pointwise, then 𝑓 is measurable. This can be generalized to any general

function 𝑓 from (Ω, ℱ) to another measurable space (𝑆, ℬ(𝑆)).
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1 Lebesgue integration
1.1 Setup
Consider a measurable function 𝑓 : (Ω, ℱ , 𝜇) → (R*, ℬ(R*)). We want to define the
Lebesgue integration ∫︁

Ω
𝑓(𝜔)𝑑𝜇(𝜔).

1.2 Indicator function
Let 𝑓 := 1𝐴(·) for some 𝐴 ∈ ℱ . Then,∫︁

Ω
𝑓(𝜔)𝑑𝜇(𝜔) = 𝜇(𝐴).

1.3 Nonnegative simple function (NSF)
Let 𝑓 := ∑︀

𝑖=1 𝑎𝑖1𝐴𝑖(·) for some 𝑛 < ∞, 𝑎𝑖 ≥ 0, 𝐴𝑖’s are disjoint elements in ℱ . Then∫︁
Ω

𝑓(𝜔)𝑑𝜇(𝜔) =
𝑛∑︁

𝑖=1
𝑎𝑖𝜇(𝐴𝑖).

Remark 1.1. • If 𝑓 is an NSF and 𝑎 ≥ 0, then 𝑎 · 𝑓 is an NSF and so∫︁
𝑎𝑓𝑑𝜇 = 𝑎

∫︁
𝑓𝑑𝜇,

• For any NSFs 𝑓 and 𝑔, 𝑓 + 𝑔 is still an NSF and∫︁
(𝑓 + 𝑔)𝑑𝜇 =

∫︁
𝑓𝑑𝜇 +

∫︁
𝑔𝑑𝜇

1.4 Nonnegative measurable function
Let 𝑓 : Ω → [0, ∞]. Define SF+(𝑓) := {all NSF bounded by 𝑓}. Then∫︁

Ω
𝑓(𝜔)𝑑𝜇(𝜔) = sup

𝑔∈SF+(𝑓)

∫︁
𝑔𝑑𝜇.

1.5 General measurable function
Let 𝑓 : Ω → R

*. Define 𝑓+ := max{𝑓, 0} and 𝑓− := − min{𝑓, 0}. Observe that
𝑓 = 𝑓+ − 𝑓− where 𝑓+, 𝑓− are measurable and nonnegative. Then∫︁

Ω
𝑓(𝜔)𝑑𝜇(𝜔) =

∫︁
𝑓+𝑑𝜇 −

∫︁
𝑓−𝑑𝜇.



2

Definition 1.2 (Well-defined integral). Consider any measurable function 𝑓 : Ω → R
*.

∫︀
𝑓𝑑𝜇

is said to be well-defined if one of
∫︀

𝑓+𝑑𝜇,
∫︀

𝑓−𝑑𝜇 is finite (in order to avoid ∞ − ∞).

Definition 1.3 (Integrable). A measurable function 𝑓 : Ω → R
* is said to be integrable if

both
∫︀

𝑓+𝑑𝜇,
∫︀

𝑓−𝑑𝜇 are finite.

In practice, we usually do not integrate over the entire Ω but a subset 𝑆 ⊆ Ω. We
define ∫︁

𝑆
𝑓𝑑𝜇 =

∫︁
𝑆

𝑓1𝑆(·)𝑑𝜇.

2 Linearity of Lebesgue integration
We want to show the following proposition that Lebesgue integration is a linear operator.

Proposition 2.1. If 𝑓, 𝑔 are measurable and nonnegative from Ω to [0, ∞], then

•
∫︀

(𝑓 + 𝑔)𝑑𝜇 =
∫︀

𝑓𝑑𝜇 +
∫︀

𝑔𝑑𝜇 and
• For any 𝛼 ∈ R,

∫︀
(𝛼𝑓)𝑑𝜇 = 𝛼

∫︀
𝑓𝑑𝜇.

If 𝑓, 𝑔 are measurable and integrable, then for any 𝛼, 𝛽 ∈ R,

• 𝛼𝑓 + 𝛽𝑔 is integrable and
• (𝛼𝑓 + 𝛽𝑔)𝑑𝜇 = 𝛼

∫︀
𝑓𝑑𝜇 + 𝛽

∫︀
𝑔𝑑𝜇.

To prove this proposition, we need the following two propositions or theorems:

Proposition 2.2. Given any negative measurable function 𝑓 , there exists a sequence of
NSFs {𝑓𝑛}𝑛≥1 increasing pointwisely to 𝑓 .

Proof. See the textbook Proposition 2.3.6.

Theorem 2.3 (Monotone convergence theorem (MCT)). Consider a sequence of measurable,
nonnegative functions {𝑓𝑛}𝑛≥1 increasing to 𝑓 pointwisely. Then,

• 𝑓 is nonnegative,
• 𝑓 is measurable, and
• lim𝑛→∞

∫︀
𝑓𝑛𝑑𝜇 =

∫︀
𝑓𝑑𝜇.

Proof. See the next lecture note.

Now let’s prove the first part of proposition 2.1.

Proof. By proposition 2.2, there exists increasing sequences of NSFs {𝑓𝑛}𝑛≥1 and
{𝑔𝑛}𝑛≥1 to 𝑓 and 𝑔. By MCT,

1. lim
∫︀

𝑓𝑛𝑑𝜇 =
∫︀

𝑓𝑑𝜇 and lim
∫︀

𝑔𝑛𝑑𝜇 =
∫︀

𝑔𝑑𝜇,
2. 𝑓𝑛 +𝑔𝑛 is an NSF such that

∫︀
(𝑓𝑛 + 𝑔𝑛)𝑑𝜇 =

∫︀
𝑓𝑛𝑑𝜇+

∫︀
𝑔𝑛𝑑𝜇 and 𝑓𝑛 +𝑔𝑛 increasing

pointwise to 𝑓 + 𝑔,
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3. ∫︁
(𝑓 + 𝑔)𝑑𝜇 =

∫︁
lim

𝑛→∞
(𝑓𝑛 + 𝑔𝑛)𝑑𝜇

= lim
𝑛→∞

(𝑓𝑛 + 𝑔𝑛)𝑑𝜇

= lim
𝑛→∞

(︂∫︁
𝑓𝑛𝑑𝜇 +

∫︁
𝑔𝑛𝑑𝜇

)︂
= lim

𝑛→∞

∫︁
𝑓𝑛𝑑𝜇 + lim

𝑛→∞

∫︁
𝑔𝑛𝑑𝜇

=
∫︁

𝑓𝑑𝜇 +
∫︁

𝑔𝑑𝜇.
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1 Recap

There are some nice properties on Lebesgue integration

1. In many simple cases (e.g., 𝑓 is continuous, bounded, and has bounded domain),
if 𝑓 is Riemann integrable, then it is also Lebesgue integrable and two integrals
are equal.

2. Lebesgue integration is a linear operator.

2 Monotone convergence theorem (MCT)

Before we prove the MCT, we need two lemmas.

Lemma 2.1. If 𝑓, 𝑔 are two measurable, nonnegative functions such that 𝑓 ≤ 𝑔, then∫︀
𝑓𝑑𝜇 ≤

∫︀
𝑔𝑑𝜇

Proof. Since 𝑓 ≤ 𝑔, SF+(𝑓) ⊆ SF+(𝑔). So

∫︁
𝑓𝑑𝜇 = sup

𝑠∈SF+(𝑓)

∫︁
𝑠𝑑𝜇

≤ sup
𝑠∈SF+(𝑔)

∫︁
𝑠𝑑𝜇

=
∫︁

𝑔𝑑𝜇.

Lemma 2.2. Let 𝑠 be an NSF on Ω. We can define 𝜈 : ℱ → R
* such that 𝜈(𝑆) :=

∫︀
𝑆 𝑠𝑑𝜇

for each 𝑆 ∈ ℱ . Then 𝜈 is a measure over (Ω, ℱ)

Proof. By construction, 𝜈 ≥ 0 and 𝜈(∅) = 0. Let 𝑆1, 𝑆2, . . . be a sequence of disjoint
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sets in ℱ , and let 𝑆 := ⋃︀∞
𝑛=1 𝑆𝑛. Then,

𝜈(𝑆) =
∫︁

𝑆
𝑠(𝜔)𝑑𝜇(𝜔)

=
∫︁

𝑆

𝑛∑︁
𝑖=1

𝑎𝑖1𝐴𝑖(𝜔)𝑑𝜇(𝜔)

=
∫︁

Ω

(︃
𝑛∑︁

𝑖=1
𝑎𝑖1𝐴𝑖(𝜔)

)︃
1𝑆(𝜔)𝑑𝜇(𝜔)

=
∫︁

Ω

𝑛∑︁
𝑖=1

𝑎𝑖1𝐴𝑖∩𝑆(𝜔)𝑑𝜇(𝜔)

=
𝑛∑︁

𝑖=1
𝑎𝑖𝜇(𝐴𝑖 ∩ 𝑆)

=
𝑛∑︁

𝑖=1
𝑎𝑖𝜇
(︁
𝐴 ∩ ∪∞

𝑗=1𝑆𝑗

)︁
=

𝑛∑︁
𝑖=1

∞∑︁
𝑗=1

𝜇(𝐴𝑖 ∩ 𝑆𝑗)

=
∞∑︁

𝑗=1

𝑛∑︁
𝑖=1

𝜇(𝐴𝑖 ∩ 𝑆𝑗)

=
∞∑︁

𝑗=1
𝜈(𝑆𝑗)

Recall the MCT.

Theorem 2.3 (Monotone convergence theorem (MCT)). Consider a sequence of measurable,
nonnegative functions {𝑓𝑛}𝑛≥1 increasing to 𝑓 pointwisely. Then,

• 𝑓 is nonnegative,
• 𝑓 is measurable, and
• lim𝑛→∞

∫︀
𝑓𝑛𝑑𝜇 =

∫︀
𝑓𝑑𝜇.

Proof. Because 𝑓𝑛 ≥ 𝑓𝑚 for all 𝑛 > 𝑚, by the first lemma,
∫︀

𝑓𝑛𝑑𝜇 ≥
∫︀

𝑓𝑚𝑑𝜇. Thus,∫︀
𝑓𝑛𝑑𝜇 is increasing, implying that lim

∫︀
𝑓𝑛𝑑𝜇 exists and can be ∞.

Because 𝑓 ≥ 𝑓𝑛, by the first lemma again, for all 𝑛
∫︀

𝑓𝑑𝜇 ≥
∫︀

𝑓𝑛𝑑𝜇, implying that∫︀
𝑓𝑑𝜇 ≥ lim𝑛→∞

∫︀
𝑓𝑛𝑑𝜇.

Take any 𝑠 ∈ SF+(𝑓) and fix arbitrary 𝛼 ∈ (0, 1). By the second claim, we can
define 𝜈(𝑆) =

∫︀
𝑆 𝑠𝑑𝜇 for any 𝑆 ∈ ℱ . Define 𝑆𝑛 := {𝜔 ∈ Ω : 𝛼𝑠(𝜔) ≤ 𝑓𝑛(𝜔)}. Since

𝑠 ∈ SF+(𝑓) and 𝑓𝑛 increases to 𝑓 , 𝑆𝑛 increases to Ω. So 𝜈(𝑆𝑛) increases to 𝜈(Ω). Now we
have

∫︀
Ω 𝑠𝑑𝜇 = 𝜈(Ω) = lim𝑛→∞ 𝜈(𝑆𝑛) = lim𝑛→∞

∫︀
𝑆𝑛

𝑠𝑑𝜇. This implies that 𝛼
∫︀

Ω 𝑠𝑑𝜇 =
𝛼𝜈(Ω) = lim𝑛→∞ 𝛼𝜈(𝑆𝑛) = lim𝑛→∞

∫︀
𝑆𝑛

𝛼𝑠𝑑𝜇. Thus,
∫︀

𝛼𝑠𝑑𝜇 = lim𝑛→∞
∫︀

𝑆𝑛
𝛼𝑠𝑑𝜇 =

lim𝑛→∞
∫︀

Ω 𝛼𝑠1𝑆𝑛(·)𝑑𝜇 ≤ lim𝑛→∞
∫︀

Ω 𝑓𝑛𝑑𝜇. The last equality follows the first claim.
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Now we have for any 𝑠 ∈ SF+(𝑓) and any 𝛼 ∈ (0, 1), 𝛼 ·
∫︀

𝑠𝑑𝜇 ≤ lim𝑛→∞
∫︀

𝑓𝑛𝑑𝜇,
implying that

∫︀
𝑓𝑑𝜇 = sup𝑠∈SF+(𝑓),𝛼∈(0,1) 𝛼

∫︀
𝑠𝑑𝜇 ≤ lim

∫︀
𝑓𝑛𝑑𝜇.
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1 Fatou’s lemma
Lemma 1.1 (Fatou’s lemma). For a sequence of measurable nonnegative functions 𝑓𝑛,

∫︁
(lim inf 𝑓𝑛)𝑑𝜇 ≤ lim inf

∫︁
𝑓𝑛𝑑𝜇. (1)

Proof. Define 𝑔𝑛 := inf𝑚≥𝑛 𝑓𝑚. We can see that 𝑔𝑛 ≥ 0, 𝑔𝑛 is increasing to lim inf 𝑓𝑛,
and 𝑔𝑛 ≤ 𝑓𝑛. The LHS of the equation (1) is

∫︀
lim 𝑔𝑛𝑑𝜇 = lim

∫︀
𝑔𝑛𝑑𝜇 ≤ lim inf

∫︀
𝑓𝑛𝑑𝜇

which is the RHS of the equation (1). The first equality follows from MCT, the first
inequality follows from that

∫︀
𝑔𝑛𝑑𝜇 ≤

∫︀
𝑡𝑓𝑛𝑑𝜇.

2 DCT
Theorem 2.1 (DCT). Suppose the following:

1. 𝑓𝑛 : Ω → R
* are measurable.

2. 𝑓 := lim 𝑓𝑛 exists pointwisely.

3. 𝑓𝑛’s are dominated by an integrable function ℎ(·), i.e., ∃ℎ : Ω → R
* measurable

such that ∀𝑛, ∀𝑤 ∈ Ω, |𝑓𝑛(𝑤)| ≤ ℎ(𝑤) and
∫︀

ℎ𝑑𝜇 < ∞.

Then, We claim that

1.
∫︀

𝑓𝑑𝜇 =
∫︀

lim 𝑓𝑛𝑑𝜇 = lim
∫︀

𝑓𝑛𝑑𝜇.

2. lim
∫︀

|𝑓𝑛 − 𝑓 |𝑑𝜇 = 0.

Proof. The proof is based on Fatou’s lemma. Observe that following:

1. From the homework, we know 𝑓 is measurable.

2. Since ∀𝑛, |𝑓𝑛| ≤ ℎ, we have |𝑓 | ≤ ℎ.

3. Since |𝑓𝑛| ≤ ℎ and |𝑓 | ≤ ℎ, we have 𝑓𝑛 + ℎ and 𝑓 + ℎ are measurable, nonnegative,
and integrable.
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4.

𝑓𝑛 → 𝑓 =⇒ 𝑓𝑛 + ℎ → 𝑓 + ℎ

=⇒
∫︁

lim inf (𝑓𝑛 + ℎ)𝑑𝜇 ≤ lim inf
∫︁

(𝑓𝑛 + ℎ)𝑑𝜇 ∵ Fatou’s lemma

=⇒
∫︁

(𝑓 + ℎ)𝑑𝜇 ≤ lim inf
∫︁

(𝑓𝑛 + ℎ)𝑑𝜇

=⇒
∫︁

(𝑓 + ℎ)𝑑𝜇 =
∫︁

𝑓𝑑𝜇 +
∫︁

ℎ𝑑𝜇 ≤ lim inf
∫︁

𝑓𝑛𝑑𝜇 +
∫︁

ℎ𝑑𝜇

= lim inf
∫︁

𝑓𝑛𝑑𝜇 +
∫︁

ℎd𝜇

∵ 𝑓, ℎ, 𝑓𝑛, 𝑓 + ℎ, 𝑓𝑛 + ℎ are integrable and
∫︁

ℎ𝑑𝜇 < ∞

=⇒
∫︁

𝑓𝑑𝜇 ≤ lim inf
∫︁

𝑓𝑛𝑑𝜇.

5. It remains to show that
∫︀

𝑓𝑑𝜇 ≥ lim sup
∫︀

𝑓𝑛𝑑𝜇. Apply the argument in (4) to
−𝑓𝑛, −𝑓 . In particular, we have∫︁

(−𝑓)𝑑𝜇 ≤ lim inf
∫︁

(−𝑓𝑛)𝑑𝜇 =⇒ −
∫︁

𝑓𝑑𝜇 =
∫︁

(−𝑓)𝑑𝜇 ≤ lim inf
∫︁

(−𝑓𝑛)𝑑𝜇

= − lim sup
∫︁

(𝑓𝑛)𝑑𝜇

=⇒
∫︁

𝑓𝑑𝜇 ≥ lim sup
∫︁

(𝑓𝑛)𝑑𝜇

Remark 2.2 (Remarks for DCT). • The dominated condition, which is the third condi-
tion, CANNOT be dropped. i.e., if it doesn’t hold, then probably

∫︀
lim 𝑓𝑛𝑑𝜇 ̸=

lim
∫︀

𝑓𝑛𝑑𝜇.
• Notice that the nonnegativity is need for MCT and Fatou but not needed for

DCT.
• The second claim implies the first claim as⃒⃒⃒⃒∫︁

𝑓𝑑𝜇 − lim
∫︁

𝑓𝑛𝑑𝜇

⃒⃒⃒⃒
= lim

⃒⃒⃒⃒∫︁
(𝑓 − 𝑓𝑛)𝑑𝜇

⃒⃒⃒⃒
≤ lim

∫︁
|𝑓 − 𝑓𝑛|𝑑𝜇

= 0.

• The first claim implies the first claim as applying the first claim to the sequence
𝑔𝑛 := |𝑓𝑛 − 𝑓 |.

Here’s an example of DCT theorem.
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Example 2.3. Given 𝑥1, 𝑥2, . . . , 𝑥𝑛
i.i.d.∼ 𝑓𝜃0(·), the goal is to estimate or infer 𝜃0 based only

on 𝑥1, . . . , 𝑥𝑛. The MLE method is to find 𝜃𝑛 such that 𝜃 = arg max 𝜃∈Θ
∑︀𝑛

𝑖=1 log 𝑓𝜃(𝑥𝑖),
implying that 𝜃 is the root of 𝜕

𝜕𝜃 [∑︀𝑛
𝑖=1 log 𝑓𝜃(𝑥𝑖)]. Fisher claimed that 𝜃 should be close

to 𝜃0, as 𝜃0 should make 1
𝑛

∑︀𝑛
𝑖=1

𝜕
𝜕𝜃 log 𝑓𝜃(𝑥𝑖)

⃒⃒
𝜃=𝜃0

close to 0. By the law of large numbers,
1
𝑛

∑︀𝑛
𝑖=1

𝜕
𝜕𝜃 log 𝑓𝜃(𝑥𝑖)

⃒⃒
𝜃=𝜃0

should converge to E
[︁

𝜕
𝜕𝜃 log 𝑓𝜃(𝑋)

⃒⃒
𝜃=𝜃0

]︁
, and we claim that

E
[︁

𝜕
𝜕𝜃 log 𝑓𝜃(𝑋)

⃒⃒
𝜃=𝜃0

]︁
is 0. The proof from 513 goes as follows:

E
[︂

𝜕

𝜕𝜃
log 𝑓𝜃(𝑋)

⃒⃒
𝜃=𝜃0

]︂
=
∫︁

𝜕

𝜕𝜃
log 𝑓𝜃(𝑋)

⃒⃒
𝜃=𝜃0

𝑓𝜃0(𝑥)𝑑𝑥

=
∫︁ 𝜕

𝜕𝜃 𝑓𝜃(𝑋)
⃒⃒
𝜃=𝜃0

𝑓𝜃0(𝑥) 𝑓𝜃0(𝑥)𝑑𝑥

=
∫︁

𝜕

𝜕𝜃
𝑓𝜃(𝑋)

⃒⃒
𝜃=𝜃0

𝑑𝑥

= 𝜕

𝜕𝜃

∫︁
𝑓𝜃0(𝑥)𝑑𝑥 ∵ DCT

= 𝜕

𝜕𝜃
1

= 0.

When can we switch
∫︀

and 𝜕
𝜕𝜃 ?

Proposition 2.4. Let 𝑓 : ℐ × Ω → R where ℐ is an open set in R. Then, under certain
conditions, we have ∀𝑥 ∈ ℐ, 𝑑

𝑑𝑥 [
∫︀

𝑓(𝑥, 𝑤)𝑑𝜇(𝑤)] =
∫︀ [︁ 𝑑

𝑑𝑥𝑓(𝑥, 𝑤)𝑑𝜇(𝑤)
]︁
.

3 "Almost everywhere" and "Almost surely"
Definition 3.1 (almost everywhere). Consider a measure space (Ω, ℱ , 𝜇). A set 𝐴 ∈ ℱ is
aid to happen almost everywhere (a.e.) if and only if 𝜇(𝐴c) = 0. In this case, we say 𝐴
is 𝜇-a.e., or 𝐴 is a.e.

Definition 3.2 (almost surely). It is a.e. when a measure space (Ω, ℱ , 𝜇) is a probability
space.

Example 3.3. We say 𝑓 = 𝑔 a.e. if, except for a 𝜇-measure 0 set, 𝑓 = 𝑔. i.e., ∃𝐸 ∈ ℱ
such that 𝜇(𝐸) = 0 and 𝑓(𝑤) = 𝑔(𝑤), ∀𝑤 ∈ 𝐸c.

Remark 3.4. If (Ω, ℱ , 𝜇) is complete, then 𝑓 = 𝑔 a.e. if and only if 𝜇({𝑤 : 𝑓(𝑤) ̸= 𝑔(𝑤)}) =
0.

Example 3.5. We can say that 𝑓𝑛 → 𝑓 a.e. if, except for a set 𝐸 of 𝜇(𝐸) = 0,
𝑓𝑛(𝑤) → 𝑓(𝑤), ∀𝑤 ∈ 𝐸c.

Proposition 3.6. Assume 𝑓 : Ω → [0, ∞] to be measurable, we claim that
∫︀

𝑓𝑑𝜇 = 0 if
and only if 𝑓 = 0 a.e..
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Proof. To prove the backward direction, suppose 𝑓 = 0 a.e., then ∀𝑔 ∈ SF+(𝑓), we have∫︀
𝑔𝑑𝜇 = 0.

To prove the forward direction, we prove by contradiction. If 𝑓 : Ω → [0, ∞] and
𝑓 ̸= 0 a.e., then

𝜇({𝑤 : 𝑓(𝑤) + 0}) > 0 =⇒ 𝜇({𝑤 : 𝑓(𝑤) + 0}) > 0 = 𝜇

(︃ ∞⋃︁
𝑛=1

{𝑤 : 𝑓(𝑤) >
1
𝑛

}
)︃

∵ set theory

=⇒ 𝜇({𝑤 : 𝑓(𝑤) + 0}) > 0 = lim 𝜇

(︂
{𝑤 : 𝑓(𝑤) >

1
𝑛

}
)︂

> 0

=⇒ ∃𝑛, 𝜇

(︂
{𝑤 : 𝑓(𝑤) >

1
𝑛

}
)︂

> 0

=⇒
∫︁

𝑓𝑑𝜇 ≥
∫︁

𝑓1(𝐴𝑛)𝑑𝜇 ≥
∫︁ 1

𝑛
1(𝐴𝑛)𝑑𝜇 = 𝜇(𝐴𝑛)

𝑛
> 0

where 𝐴𝑛 := {𝑤 : 𝑓(𝑤) > 1
𝑛}.
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1 Famous Quote from Fang today
“I don’t like mathematical induction. It’s unintuitive to me." – Fang Han

2 Review and introduction
So far we’ve covered

• (Chap 1) Measure space (Ω, ℱ , 𝜇), Lebesgue measure on R and R
𝑛 based on

Caratheodory extension theorem. From (𝒜, 𝜇𝒜) to (𝜎(𝒜), 𝜇) and to
(︁
ℱ𝜇*

, 𝜇
)︁
.

• (Chap 2) Lebesgue integral of 𝑓 : (Ω, ℱ , 𝜇) → (R*, ℬ(R*)) where 𝑓 is a SS, NSF,
nonnegative, or general function. Also we learned linear operator, MCT, Fatou,
and DCT.

Next, in Chapter 3, we will learn product space, which generalizesR𝑛 and Fubini-Tornelli
theorem. The motivation

1. The homework gives a specific way to define 𝜆 on (R𝑛, ℬ(R𝑛)); but it CANNOT be
easily generalized to a general “n-dimensional" space. For example, given two man-
ifolds (ℳ1, ℱ1, 𝜇1) and (ℳ2, ℱ2, 𝜇2), how to define on (ℳ1 × ℳ2, ℱ1 × ℱ2, 𝜇)?

2. The Fubini-Torelli theorem. From mathematical analysis,∫︁
𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦) =

∫︁ (︂∫︁
𝑓(𝑥, 𝑦)𝑑𝑥

)︂
𝑑𝑦

where the inside integral is Riemann and the equality is under some conditions.
Also, the notation of 𝑑(𝑥, 𝑦) is confusing. From measure theory, we have∫︁

𝑓(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦)

where the integral is Lebesgue and 𝑑𝜇(𝑥, 𝑦) will be defined on product measure in
a product measure space w.r.t. product measurable space.

3 Product space
Definition 3.1 (Product set). Given finitely many general measure spaces: (Ω1, ℱ1), (Ω2, ℱ2)
, . . . , (Ω𝑛, ℱ𝑛) with 𝑛 < ∞. Then we can define the product set as

Ω := Ω1 × Ω2 × · · · Ω𝑛.

i.e, 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ Ω if and only if 𝑤1 ∈ Ω1, 𝑤2 ∈ Ω2, . . . , 𝑤𝑛 ∈ Ω𝑛.

Example 3.2. If each Ω𝑖 = R, then Ω = R
𝑛. If 𝑛 = 2, Ω can be a rectangle.
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Definition 3.3 (Product 𝜎-algebra). Given a product set Ω. The product 𝜎-algebra over Ω is

ℱ := ℱ1 × ℱ2 × · · · × ℱ𝑛 = 𝜎({𝐴1 × 𝐴2 × · · · × 𝐴𝑛 : 𝐴1 ∈ ℱ1, 𝐴2 ∈ ℱ2, · · · , 𝐴𝑛 ∈ ℱ𝑛}).

Example 3.4. If Ω1 = {0, 1}, Ω2 = {0, 1, 2}, what is ℱ1 × ℱ2?

Remark 3.5. • (Ω, ℱ) is called the the product measurable space from (Ω1, ℱ1), (Ω2, ℱ2)
, . . . , (Ω𝑛, ℱ𝑛).

• If (Ω𝑖, ℱ𝑖) = (R, ℬ(𝑅)) for each 𝑖 = 1, . . . , 𝑛, then (Ω, ℱ) = (R, ℬ(R)).
• Given Ω1 × Ω2 × · · · Ω𝑛 and ℱ1 × ℱ2 × · · · ℱ𝑛, suppose we have 𝑛 measure spaces

(Ω1, ℱ1, 𝜇1), (Ω2, ℱ2, 𝜇2), . . . , (Ω𝑛, ℱ𝑛, 𝜇𝑛). What would be the corresponding prod-
uct measure on (Ω, ℱ)? In particular, when (Ω, ℱ) = (R𝑛, ℬ(R𝑛)), I wish the prod-
uct measure to be Lebesgue measure. To answer this question, we start with if 𝜇 is
a product measure, then 𝜇 should satisfy for any 𝐴1 ∈ ℱ1, 𝐴2 ∈ ℱ2, . . . , 𝐴𝑛 ∈ ℱ𝑛

𝜇(𝐴1 × 𝐴2 × · · · × 𝐴𝑛) =
𝑛∏︁

𝑖=1
𝜇𝑖(𝐴𝑖). (1)

Next, define 𝜇 = 𝜇1 × · · · × 𝜇𝑛 over (Ω1 × · · · × Ω𝑛, ℱ1 × · · · × ℱ𝑛) following
Chap 1’s method: (𝒜, 𝜇𝒜) to be set up such that (1) 𝒜 is a algebra, (2) 𝜇𝒜 is
an pre-measure over 𝒜, and (3) Equation (1) holds true over (𝒜, 𝜇𝒜). Then,
Caratheodory gives us a measure space (𝜎(𝒜), 𝜇). It remains to construct a “good"
(𝒜, 𝜇𝒜).

Theorem 3.6 (Product measure space). Given

1. (Ω, ℱ) is a product measurable space;
2. Each (Ω𝑖, ℱ𝑖) has a 𝜎-finite measure 𝜇𝑖 (uniqueness of the extension).

Then there exists a unique measure 𝜇 = 𝜇1 × · · · × 𝜇𝑛 over (Ω, ℱ) such that for any
𝐴1 ∈ ℱ1, . . . , 𝐴𝑛 ∈ ℱ𝑛, equation (1) is true.

Proof. It remains to construct (𝒜, 𝜇𝒜) and show it satisfies the previous conditions.
Let 𝒜 := {finite disjoint union of rectangles (i.e., 𝐴1 × · · · × 𝐴𝑛 with 𝐴𝑖 ∈ ℱ𝑖)}. Then,
for any 𝐴 ∈ 𝒜,

𝜇𝒜(𝐴) = 𝜇𝒜

(︃
𝑚⋃︁

𝑖=1
𝐴𝑖1 × · · · × 𝐴𝑖𝑛

)︃

:=
𝑚∑︁

𝑖=1
𝜇1(𝐴𝑖1)𝜇2(𝐴𝑖2) × 𝜇𝑛(𝐴𝑖𝑛).

It is immediate that 𝜇𝐴 satisfies the equation (1). We claim that 𝒜 is an algebra and
𝜇𝒜 is a pre-measure on 𝒜. To see this, follow these steps:

1. 𝒜 is an algebra. It is proved by applying induction w.r.t. the dimension 𝑛 in
(Ω1 × · · · × Ω𝑛, ℱ1 × · · · × ℱ𝑛).
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2. 𝜇𝒜 is a pre-measure. We will only prove 𝜇𝒜 is countable additive over 𝒜.

Now, we proceed with the proof by induction. The base case 𝑛 = 1 is trivial. Assume
that 𝜇 is indeed a product measure over dimension 𝑛 − 1. Using a similar argument of
the homework (prop. 1.6.4.), we just show as long as

𝐴1 × · · · × 𝐴𝑛 =
∞⋃︁

𝑖=1
(𝐴𝑖1 × · · · × 𝐴𝑖𝑛)

then
𝜇(𝐴1 × · · · × 𝐴𝑛) =

∞∑︁
𝑖=1

𝜇1(𝐴𝑖1) × · · · × 𝜇𝑛(𝐴𝑖𝑛).

To show this, we use dimension reduction.

1. We fix an 𝑥 ∈ 𝐴1 × · · · × 𝐴𝑛−1. Then introduce an index set ℐ = ℐ𝑥 to index all
𝑖 = 1, 2, . . . such that 𝑥 ∈ 𝐴𝑖1 × 𝐴𝑖2 × · · · × 𝐴𝑖,𝑛−1.

2. We can show, since 𝐴1 × · · · 𝐴𝑛 =
⋃︀𝑛

𝑖=1 𝐴𝑖1 × · · · × 𝐴𝑖𝑛, we have 𝐴𝑛 =
⋃︀

𝑖∈ℐ 𝐴𝑖,𝑛.
3. observe that {𝐴𝑖,𝑛 : 𝑖 ∈ ℐ} is a disjoint sequence.
4. ∀𝑥 ∈ Ω1 × · · · × Ω𝑛−1,

1𝐴1×···×𝐴𝑛−1(𝑥) · 𝜇𝑛(𝐴𝑛) =
∞∑︁

𝑖=1
1𝐴𝑖,1×···×𝐴𝑖,𝑛−1(𝑥)𝜇𝑛(𝐴𝑖,𝑛) (2)

. To see this, if 𝑥 ∈ 𝐴1 × · · · 𝐴𝑛−1, LHS of the equation (2) is 𝜇𝑛(𝐴𝑛) and the
RHS of the equation (2) is

∑︀
𝑖∈ℐ 𝜇𝑛(𝐴𝑖𝑛) = 𝜇𝑛(𝐴𝑛). Otherwise, both LHS and

RHS of the equation (2) are 0.
5. By induction, (Ω1 × · · · × Ω𝑛−1, ℱ1 × · · · × ℱ𝑛−1, 𝜇1 × · · · × 𝜇𝑛−1) is a product

measure space. Let 𝜇′ := 𝜇1 × · · · × 𝜇𝑛−1.∫︁
1𝐴1×···×𝐴𝑛−1(𝑥)𝜇𝑛(𝐴𝑛)𝑑𝜇′ =

∫︁ ∞∑︁
𝑖=1

1𝐴𝑖,1×···×𝐴𝑖,𝑛−1(𝑥)𝜇𝑛(𝐴𝑖,𝑛)𝑑𝜇′

from the last step. Then LHS of the equation (2) is 𝜇𝑛(𝐴𝑛)𝜇′(𝐴1 × · · · × 𝐴𝑛−1) =
𝜇𝑛(𝐴𝑛)𝜇1(𝐴1) × 𝜇𝑛−1(𝐴𝑛−1) and RHS =

∑︀∞
𝑖=1 𝜇𝑛(𝐴𝑖,𝑛) · 𝜇′(𝐴𝑖,1 × · · · × 𝐴𝑖,𝑛−1).

Since LHS is equal to RHS from the last step, we have
∏︀

𝑖 𝜇𝑖(𝐴𝑖) =
∑︀∞

𝑖=1
∏︀𝑛

𝑗=1 𝜇𝑖(𝐴𝑖𝑗) =∑︀∞
𝑖=1 𝜇(𝐴𝑖1 × · · · × 𝐴𝑖𝑛), implying the countable additivity.
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1 Famous quote from Fang today
“You will see it in 30 seconds. No, 15 seconds. Wait, just 1 second!!!" – Fang Han

2 Review
Given product space on (Ω1, ℱ1, 𝜇1), (Ω2, ℱ2, 𝜇2), . . . , (Ω𝑛, ℱ𝑛, 𝜇𝑛), we can construct
Ω := Ω1 × · · · × Ω𝑛, ℱ := ℱ1 × · · · × ℱ𝑛, and 𝜇 := 𝜇1 × · · · × 𝜇𝑛. (Ω, ℱ) is called the
product measurable space, (Ω, ℱ , 𝜇) is called the product measure space, and 𝜇 is called
the product measure over ℱ .

We claimed that 𝜇 is the unique measure over (Ω, ℱ) such that 𝜇(𝐴1 × · · · × 𝐴𝑛) =∏︀𝑛
𝑖=1 𝜇𝑖(𝐴𝑖) for any 𝐴𝑖 ∈ ℱ𝑖.

3 Fubini Theorem
What would be the corresponding

∫︀
𝑓(𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑑𝜇 where 𝑓 : Ω → R

* is measur-
able w.r.t. ℱ . Fubini’s claim is about how and when∫︁

𝑓(𝑤1, . . . , 𝑤𝑛)𝑑(𝜇1 × · · · × 𝜇𝑛) =
∫︁ ∫︁

· · ·
∫︁

𝑓(𝑤1, . . . , 𝑤𝑛)𝑑𝜇1𝑑𝜇2 · · · 𝑑𝜇𝑛.

Theorem 3.1 (Fubini-Tonelli theorem for Lebesgue measure). Given a finite collection of
measure spaces (Ω1, ℱ1, 𝜇1), (Ω2, ℱ2, 𝜇2), . . . , (Ω𝑛, ℱ𝑛, 𝜇𝑛) and Ω := Ω1 × · · · × Ω𝑛, ℱ :=
ℱ1 × · · · × ℱ𝑛, and 𝜇 := 𝜇1 × · · · × 𝜇𝑛. Then,

1. It suffices to consider 𝑛 = 2.
2. Assume (Ω1, ℱ1, 𝜇1), (Ω2, ℱ2, 𝜇2) to be two 𝜎-finite measure space.
3. Consider (Ω, ℱ , 𝜇) to be the product measure space.
4. Consider 𝑓 : Ω1 × Ω2 → R

* to be measurable.

We claim that if 𝑓 is either nonnegative or integrable, then

1. The following two functions 𝑥 →
∫︀

Ω2
𝑓(𝑥, 𝑦)𝑑𝜇2(𝑦) and 𝑦 →

∫︀
Ω1

𝑓(𝑥, 𝑦)𝑑𝜇1(𝑥) are
well-defined and measurable,

2. (Fubini)∫︁
Ω

𝑓(𝑥, 𝑦)𝑑𝜇(𝑥, 𝑦) =
∫︁

Ω1

∫︁
Ω2

𝑓(𝑥, 𝑦)𝑑𝜇2(𝑦)𝑑𝜇1(𝑥) =
∫︁

Ω2

∫︁
Ω1

𝑓(𝑥, 𝑦)𝑑𝜇1(𝑥)𝑑𝜇2(𝑦).

(1)

3. (Tonelli) If either
∫︀

Ω1

[︁∫︀
Ω2

|𝑓(𝑥, 𝑦)|𝑑𝜇2(𝑦)
]︁
𝑑𝜇1(𝑥) or

∫︀
Ω2

[︁∫︀
Ω1

|𝑓(𝑥, 𝑦)|𝑑𝜇1(𝑥)
]︁
𝑑𝜇2(𝑦)

is finite, then 𝑓 is integrable w.r.t. 𝜇 and we can apply Fubini to 𝑓 .
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Proof. To prove the third claim above, assume the first and the second claims to be held.
Then because |𝑓(𝑥, 𝑦)| ≥ 0, the first and the second claims imply

∫︀
Ω|𝑓(𝑥, 𝑦)|𝑑𝜇(𝑥, 𝑦) =∫︀

Ω1
[𝑖𝑛𝑡Ω2 |𝑓(𝑥, 𝑦)|𝑑𝜇2(𝑦)]𝑑𝜇1(𝑥) < ∞. This yields 𝑓 is integrable.
The proof of the first claim is left as an exercise.
Step 1 To prove the second claim, we start to assume that 𝑓 is a naive simple

function: 𝑓 = 1𝐴1×𝐴2(𝑤) where 𝐴1 ∈ ℱ1, 𝐴2 ∈ ℱ2, 𝑤 ∈ Ω1 × Ω2. We assume 𝐴1 × 𝐴2 is
a rectangle in ℱ here. The LHS of the equation (1) is

∫︀
Ω1×Ω2

1𝐴1×𝐴2((𝑥, 𝑦))𝑑𝜇(𝑥, 𝑦) =
𝜇(𝐴1 × 𝐴2) = 𝜇(𝐴1)𝜇(𝐴2) by the definition of Lebesgue integration. The RHS of the
equation (1) is∫︁

Ω1

[︂∫︁
Ω2
1𝐴1×𝐴2((𝑥, 𝑦))𝑑𝜇2(𝑦)

]︂
𝑑𝜇1(𝑥) =

∫︁
Ω1

[︂∫︁
Ω2
1𝐴1(𝑥)1𝐴2(𝑦)𝑑𝜇2(𝑦)

]︂
𝑑𝜇1(𝑥)

=
∫︁

Ω1
[1𝐴1(𝑥)𝜇(𝐴2)]𝑑𝜇1(𝑥)

= 𝜇2(𝐴2)
∫︁

Ω1
1𝐴1(𝑥)𝑑𝜇1(𝑥)

= 𝜇2(𝐴2)𝜇1(𝐴1)
= LHS.

Step 2, consider an advanced simple function 𝑓 = 1𝐴(𝑤) where 𝐴 is an arbitrary
element in ℱ . This can be proved through Dynkin’s 𝜋 − 𝜆 theorem. Construct a
class of sets ℬ := {𝐴 ∈ ℱ : Fubini’s claim is true for 1𝐴((·))}. Observe that ℬ ⊆ ℱ and
{all rectangles in ℱ} ⊆ ℬ from step 1.

Next, we want to show that ℬ is a 𝜆-system. Hereafter, instead of assuming 𝜎-finite,
I’ll assume 𝜇1 and 𝜇2 to be finite. To show the closeness under countable disjoint union,
consider disjoint elements 𝐵1, 𝐵2, × ∈ ℬ. The LHS is

∫︀
Ω 1𝐵(·)𝑑𝜇 = 𝜇(𝐵). The RHS

is
∫︀

Ω1

[︁∫︀
Ω2
1𝐵(·)𝑑𝜇2

]︁
𝑑𝜇1 =

∫︀
Ω1

𝜇2(𝐵𝑥)𝑑𝜇1 where 𝐵𝑥 := {𝑦 ∈ Ω2 : (𝑥, 𝑦) ∈ ℬ}. We claim
that 𝐵𝑥 =

⋃︀∞
𝑛=1(𝐵𝑛)𝑥 and (𝐵𝑛)𝑥 for 𝑛 = 1, 2, . . . are disjoint. So

∫︁
Ω1

𝜇2(𝐵𝑥)𝑑𝜇1 =
∫︁

Ω1
𝜇2

(︃ ∞⋃︁
𝑛=1

(𝐵𝑛)𝑥

)︃
𝑑𝜇1

=
∫︁

Ω1

∞∑︁
𝑛=1

𝜇2((𝐵𝑛)𝑥)𝑑𝜇1

=
∞∑︁

𝑛=1

∫︁
Ω1

𝜇2((𝐵𝑛)𝑥)𝑑𝜇1

=
∞∑︁

𝑛=1

∫︁
Ω1
1𝐵𝑛(·)𝑑𝜇

=
∞∑︁

𝑛=1
𝜇(𝐵𝑛)

= 𝜇(𝐵)
= LHS.
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To show the closeness under complement, claim that (𝐵c)𝑥 = (𝐵𝑥)c, implying that
𝐵 ∈ ℬ. Then the RHS of 1𝐵c(·) is

∫︁
Ω1

𝜇2((𝐵c)𝑥)𝑑𝜇1 =
∫︁

Ω1
𝜇2((𝐵𝑥)c)𝑑𝜇1

=
∫︁

Ω1
(𝜇2(Ω2) − 𝜇2(𝐵𝑥))𝑑𝜇1

= 𝜇2(Ω2)
∫︁

Ω1
𝑑𝜇1 −

∫︁
Ω1

𝜇2(𝐵𝑥)𝑑𝜇1(𝑥)

= 𝜇2(Ω2)
∫︁

Ω1
𝑑𝜇1 −

∫︁
Ω
1𝐵(·)𝑑𝜇

= 𝜇2(Ω2)
∫︁

Ω1
𝑑𝜇1 − 𝜇(𝐵)

= 𝜇(Ω) − 𝜇(𝐵)
= 𝜇(𝐵c)

=
∫︁

Ω
1𝐵c(·)𝑑𝜇

= LHS.

Then, define 𝒟 := {all rectanges in Ω}. Observe that 𝒟 is a 𝜋-system, 𝒟 ⊆ ℬ, and
𝜎(𝒟) = ℱ .

Finally, Dynkin’s 𝜋 − 𝜆 theorem confirms that ℱ ⊇ ℬ ⊇ 𝜎(𝒟) = ℱ , implying that
ℬ = ℱ .

Step 3, consider a nonnegative simple function 𝑓 =
∑︀𝑛

𝑖=1 𝑎𝑖1𝐴𝑖(𝑤) w.r.t. (Ω, ℱ).
Assume the step 2 holds. We have

LHS =
∫︁

Ω

(︃
𝑛∑︁

𝑖=1
𝑎𝑖1𝐴𝑖(·)

)︃
𝑑𝜇

=
𝑛∑︁

𝑖=1

(︂
𝑎𝑖

∫︁
Ω
1𝐴𝑖(·)𝑑𝜇

)︂
∵ LI is linear

=
𝑛∑︁

𝑖=1
𝑎𝑖

∫︁
Ω1

[︂∫︁
Ω2
1𝐴𝑖(·)𝑑𝜇2

]︂
𝑑𝜇1 ∵ Step 2

=
∫︁

Ω1

[︃∫︁
Ω2

𝑛∑︁
𝑖=1

𝑎𝑖1𝐴𝑖(·)𝑑𝜇2

]︃
𝑑𝜇1 ∵ LI is linear

=
∫︁

Ω1

[︂∫︁
Ω2

𝑓𝑑𝜇2

]︂
𝑑𝜇1

= RHS.
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Step 4, consider a nonnegative measurable function 𝑓 . With MCT and Prop 2.3.6.,

LHS =
∫︁

Ω
𝑓(𝑥, 𝑦)𝑑𝜇

= lim
𝑛→∞

∫︁
Ω

𝑓𝑛𝑑𝜇 ∵ MCT and Prop 2.3.6.

= lim
𝑛→∞

[︂∫︁
Ω1

[︂∫︁
Ω2

𝑓𝑛𝑑𝜇2

]︂
𝑑𝜇1

]︂
∵ step 3

=
∫︁

Ω1

[︂∫︁
Ω2

lim 𝑓𝑛𝑑𝜇2

]︂
𝑑𝜇1 ∵ MC

= RHS.

Step 5, consider an integrable function 𝑓 . We have

LHS =
∫︁

Ω
𝑓𝑑𝜇

=
∫︁

Ω
𝑓+𝑑𝜇 −

∫︁
Ω

𝑓−𝑑𝜇 ∵ definition of LI

=
∫︁

Ω1

∫︁
Ω2

𝑓+𝑑𝜇2𝑑𝜇1 −
∫︁

Ω1

∫︁
Ω2

𝑓−𝑑𝜇2𝑑𝜇1 ∵ step 4

=
∫︁

Ω1

∫︁
Ω2

𝑓+ − 𝑓−𝑑𝜇2𝑑𝜇1

= RHS.
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1 Inequalities
Theorem 1.1 (Markov inequality). Let (Ω, ℱ , 𝜇) be a measure space and a measurable
function 𝑓 : Ω → [0, ∞]. Then for any 𝑡 > 0,

𝜇({𝜔 ∈ Ω : 𝑓(𝜔) ≥ 𝑡}) ≤ 1
𝑡

∫︁
Ω

𝑓𝑑𝜇.

Remark 1.2. In probability theory, Markov inequality is stated as P(𝑋 ≥ 𝑡) ≤ E[𝑋]
𝑡 for

any 𝑡 > 0.

Theorem 1.3 (Jensen’s inequality). Let (Ω, ℱ ,P) be a probability space and 𝑓 : Ω → R
* be

measurable and integrable. Let 𝐼 ⊇ Range(𝑓) be a interval in R* such that 𝜑 : 𝐼 → R is
convex. Then

𝜑

(︂∫︁
Ω

𝑓𝑑P

)︂
≤

∫︁
Ω

(𝜑 ∘ 𝑓)𝑑P .

Theorem 1.4 (Young’s inequality). If 𝑥, 𝑦 > 0 and (𝑝, 𝑞) is a natural couple, i.e., 𝑝, 𝑞 < 1,
𝑝, 𝑞 ≤ ∞, 1

𝑝 + 1
𝑞 = 1, then

𝑥𝑦 ≤ 𝑥𝑝

𝑝
+ 𝑦𝑞

𝑞
.

Theorem 1.5 (Holder’s inequality). For any measurable function 𝑓, 𝑔 : Ω → R
* and any

𝑝 ∈ [1, ∞],
||𝑓 · 𝑔||𝐿1 ≤ ||𝑓 ||𝐿𝑝 · ||𝑔||𝐿𝑞

whenever 1
𝑝 + 1

𝑞 = 1.

Theorem 1.6 (Minkowski inequality). For any 𝑝 ∈ [1, ∞] and any 𝑓, 𝑔 satisfy 𝑓, 𝑔 : Ω → R
*,

||𝑓 ||𝐿𝑝 , ||𝑔||𝐿𝑝 < ∞, and measurable,

||𝑓 + 𝑔||𝐿𝑝 ≤ ||𝑓 ||𝐿𝑝 + ||𝑔||𝐿𝑝 .

Proof. It needs Jensen’s and Holder’s inequality.
Suppose 𝑝 = 1. The LHS is

∫︀
|𝑓 + 𝑔|𝑑𝜇 ≤

∫︀
(|𝑓 | + |𝑔|)𝑑𝜇 =

∫︀
|𝑓 |𝑑𝜇 +

∫︀
|𝑔|𝑑𝜇 which is

RHS.
Suppose 𝑝 = ∞,then ess sup|𝑓(𝜔) + 𝑓(𝜔)| ≤ ess sup|𝑓(𝜔)| + ess sup|𝑔(𝜔)|.



2

Suppose 𝑝 ∈ (1, ∞). Then,

(LHS)𝑝 =
∫︁

|𝑓 + 𝑔|𝑝𝑑𝜇

=
∫︁

|𝑓 + 𝑔| · |𝑓 + 𝑔|𝑝−1𝑑𝜇

≤
∫︁

|𝑓 | · |𝑓 + 𝑔|𝑝−1𝑑𝜇 +
∫︁

|𝑔| · |𝑓 + 𝑔|𝑝−1𝑑𝜇

≤ ||𝑓 ||𝐿𝑝 ·
⃒⃒⃒⃒⃒⃒

|𝑓 + 𝑔|𝑝−1
⃒⃒⃒⃒⃒⃒

𝐿𝑞
+ ||𝑔||𝐿𝑝 ·

⃒⃒⃒⃒⃒⃒
|𝑓 + 𝑔|𝑝−1

⃒⃒⃒⃒⃒⃒
𝐿𝑞

∵ Holder’s inequality

= ||𝑓 ||𝐿𝑝 · ||𝑓 + 𝑔||
𝑝
𝑞

𝐿𝑝 + ||𝑔||𝐿𝑝 · ||𝑓 + 𝑔||
𝑝
𝑞

𝐿𝑝 ∵
1
𝑝

+ 1
𝑞

= 1.

Thus, ||𝑓 + 𝑔||
𝑝− 𝑝

𝑞

𝐿𝑝 ≤ ||𝑓 ||𝐿𝑝 + ||𝑔||𝐿𝑝 . Since 𝑝 − 𝑝
𝑞 = 1, we have the desired result.

2 𝐿𝑝 space
Definition 2.1 (𝐿𝑝 norm). Let (Ω, ℱ , 𝜇) be a measure space and 𝑓 : Ω → R

* be a
measurable function. Then for any 𝑝 ∈ [1, ∞], the 𝐿𝑝 norm of 𝑓(·) is defined to be

1. If 𝑝 ∈ [1, ∞), ||𝑓 ||𝐿𝑝 := (
∫︀

|𝑓 |𝑝𝑑𝜇)
1
𝑝 ,

2. If 𝑝 = ∞, ||𝑓 ||𝐿𝑝 := inf{𝐾 ∈ [0, ∞] : |𝑓 | ≤ 𝐾 𝑎.𝑒.}. This is also called “essential
supremum”.

Definition 2.2 (𝐿𝑝 space of measurable function). Let (Ω, ℱ , 𝜇) be a measure space. The
space, 𝐿𝑝(Ω, ℱ , 𝜇), is defined to be {𝑓 : Ω → R

* : 𝑓 is meausrable and ||𝑓 ||𝐿𝑝 < ∞}.

Theorem 2.3 (𝐿𝑝 space). We have the following claims:

1. Any 𝐿𝑝 function space is a vector space equipped with a norm, ||·||𝐿𝑝 , i.e., 𝐿𝑝 is a
normed vector space.

2. This 𝐿𝑝 space is a complete function space w.r.t. ||·||𝐿𝑝. i.e.,

(a) (Triangular inequality) 𝐿𝑝 norm is indeed a norm; in particular, for any
𝑓, 𝑔 ∈ 𝐿𝑝(Ω, ℱ , 𝜇), ||𝑓 + 𝑔||𝐿𝑝 ≤ ||𝑓 ||𝐿𝑝 + ||𝑔||𝐿𝑝.

(b) (Completeness) Any sequence of functions that is Cauchy w.r.t. 𝐿𝑝 norm
will converge to limit w.r.t. 𝐿𝑝 norm. Cauchy means a sequence of functions
{𝑓𝑛} is so that for any 𝜖 > 0, there exists 𝑁𝜖 such that for any 𝑛, 𝑚 > 𝑁𝜖,
||𝑓𝑛 − 𝑓𝑚||𝐿𝑝 ≤ 𝜖.

If these two claims are true, then 𝐿𝑝(Ω, ℱ , 𝜇) is a complete normed vector space, i.e., a
Banach space.

Proof. The first claim is proved by Minkowski’s inequality.
We will prove the second claim in the next lecture.
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1 Review
Recall the definition

Definition 1.1 (𝐿𝑝 space). The space 𝐿𝑝(Ω, ℱ , 𝜇) is {𝑓 : Ω → R
*; measurable and ||𝑓 ||𝐿𝑝 < ∞}.

Theorem 1.2. Any 𝐿𝑝 space, coupled with ||·||𝐿𝑝 , is a normed complete space, i.e., Banach
space.

Theorem 1.3 (Minkowski inequality). For any 𝑝 ∈ [1, ∞] and any 𝑓, 𝑔 satisfy 𝑓, 𝑔 : Ω → R
*,

||𝑓 ||𝐿𝑝 , ||𝑔||𝐿𝑝 < ∞, and measurable,

||𝑓 + 𝑔||𝐿𝑝 ≤ ||𝑓 ||𝐿𝑝 + ||𝑔||𝐿𝑝 .

Theorem 1.4 (Holder’s inequality). For any measurable function 𝑓, 𝑔 : Ω → R
* and any

𝑝 ∈ [1, ∞],
||𝑓 · 𝑔||𝐿1 ≤ ||𝑓 ||𝐿𝑝 · ||𝑔||𝐿𝑞

whenever 1
𝑝 + 1

𝑞 = 1.

Remark 1.5. When 𝑝 = 𝑞 = 2, we obtain Cauchy-Schwartz

||𝑓 · 𝑔||𝐿1 ≤ ||𝑓 ||𝐿2 · ||𝑔||𝐿2 .

For example, E[𝑋𝑌 ] ≤
√︀
E[𝑋2]

√︀
E[𝑌 2].

Proof. If 𝑝 = 1, 𝑞 = ∞, then

LHS =
∫︁

|𝑓 · 𝑔|𝑑𝜇

=
∫︁

|𝑓 ||𝑔|𝑑𝜇

≤
∫︁

|𝑓 |||𝑔||𝐿∞𝑑𝜇

= ||𝑔||𝐿∞

∫︁
|𝑓 |𝑑𝜇

= RHS

If 𝑝 = ∞, 𝑞 = 1, we have the symmetric argument.
If 𝑝, 𝑞 ∈ (1, ∞), we will use Young’s inequality. Let 𝑢 := 𝑓

||𝑓 ||𝐿𝑝
and 𝑣 := 𝑔

||𝑔||𝐿𝑞

assuming that ||𝑓 ||𝐿𝑝 < ∞ and ||𝑔||𝐿𝑞 < ∞. Notice that ||𝑢||𝐿𝑝 = ||𝑣||𝐿𝑞 = 1. Also, for
any 𝜔 ∈ Ω,

|𝑢(𝜔)𝑣(𝜔)| = ||𝑢(𝜔)| · |𝑣(𝜔)|| ≤ |𝑢(𝜔)|𝑝

𝑝
+ |𝑣(𝜔)|𝑞

𝑞
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by Young’s inequality. This implies that∫︁
|𝑢𝑣|𝑑𝜇 ≤

∫︀
|𝑢(𝜔)|𝑝𝑑𝜇(𝜔)

𝑝
+

∫︀
|𝑣(𝜔)|𝑝𝑑𝜇(𝜔)

𝑞

≤ ||𝑢||𝑝𝐿𝑝

𝑝
+ ||𝑣||𝑞𝐿𝑞

𝑞

= 1
𝑝

+ 1
𝑞

= 1,

so
∫︀

|𝑓𝑔|𝑑𝜇 ≤ ||𝑓 ||𝐿𝑝 ||𝑔||𝐿𝑞 .

Now, we want to show the completeness of 𝐿𝑝 norm. That is, any sequence of
functions that is Cauchy in the 𝐿𝑝 norm converges to a limit in 𝐿𝑝 space. We start by
showing the following lemma.

Lemma 1.6. Consider {𝑓𝑛} to be a Cauchy sequence w.r.t. 𝐿𝑝 norm:

∀𝜖 > 0, ∃𝑁𝑞 > 0 s.t. ∀𝑛, 𝑚 ≥ 𝑁𝑞, ||𝑓𝑛 − 𝑓𝑚||𝐿𝑝 ≤ 𝜖.

We claim that ∃ some 𝑓 ∈ 𝐿𝑝(Ω, ℱ , 𝜇) and ∃ a subsequence {𝑓𝑛𝑘
}𝑘=1,2,... such that

𝑓𝑛𝑘
→ 𝑓 a.e. as 𝑘 → ∞.

Proof. The idea is to construct an {𝑛𝑘} and use Borel-Caretalli 1st lemma. We follows
these steps:

1. Since 𝑓𝑛𝑘
→ 𝑓 a.e. as 𝑘 → ∞, ∃𝐵 ∈ ℱ such that 𝜇(𝐵c) = 0 and ∀𝜔 ∈ 𝐵,

𝑓𝑛𝑘
(𝜔) → 𝑓(𝜔) as 𝑘 → ∞.

2. By the Cauchy sequence condition, for any 𝑘 = 1, 2, 3, 4, . . . , pick 𝜖𝑘 := 2−𝑘,
𝑁𝑘 = 𝑁𝜖𝑘

, 𝑛𝑘 = 𝑁𝑘 + 1. Then by definition, for 𝑘 = 1, 2, . . . ,
⃒⃒⃒⃒

𝑓𝑛𝑘
− 𝑓𝑛𝑘+1

⃒⃒⃒⃒
𝐿𝑝 ≤

𝜖𝑘

(︁
= 2−𝑘

)︁
.

3. Defien 𝐴𝑘 :=
{︁

𝜔 ∈ Ω :
⃒⃒⃒
𝑓𝑛𝑘(𝜔) − 𝑓𝑛𝑘+1(𝜔)

⃒⃒⃒
≥ 2− 𝑘

2
}︁

. Then by Markov inequality,

𝜇(𝐴𝑘) ≤
∫︀ ⃒⃒

𝑓𝑛𝑘
− 𝑓𝑛𝑘+1

⃒⃒𝑝
𝑑𝜇

2− 𝑘𝑝
2

= 2
𝑘𝑝
2

⃒⃒⃒⃒
𝑓𝑛𝑘

− 𝑓𝑛𝑘+1

⃒⃒⃒⃒𝑝
𝐿𝑝

≤ 2
𝑘𝑝
2 𝜖𝑝

𝑘

= 2
𝑘𝑝
2 2−𝑘𝑝

= 2− 𝑘𝑝
2 .

This implies that
∑︀∞

𝑘=1 𝜇(𝐴𝑘) ≤
∑︀∞

𝑘=1 2− 𝑘𝑝
2 < ∞.

4. 1st (B-C) lemma: Let (Ω, ℱ , 𝜇) be a measure space and 𝐴1, 𝐴2, · · · ∈ ℱ sat-
isfy

∑︀∞
𝑛=1 𝜇(𝐴𝑛) < ∞. Then, 𝜇({𝜔 ∈ Ω : 𝜔 is in infinitely many 𝐴𝑛’s}) = 0, i.e.,

{𝜔 ∈ Ω : 𝜔 is in infinitely many 𝐴𝑛’s} is dominating Ω.
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5. Define 𝐵 := {𝜔 ∈ Ω : 𝜔 is only in finitely many 𝐴𝑘’s} where 𝐴𝑘 =
{︁

𝜔 :
⃒⃒
𝑓𝑛𝑘

(𝜔) − 𝑓𝑛𝑘+1(𝜔)
⃒⃒

≥ 2− 𝑘
2
}︁

.
Using 1st (B-C) lemma, we have 𝜇(𝐵c) = 0. In other words, if 𝜔 ∈ 𝐵, for all
sufficiently large 𝑘, we have⃒⃒

𝑓𝑛𝑘
(𝜔) − 𝑓𝑛𝑘+1(𝜔)

⃒⃒
≤ 2− 𝑘

2

implying that

∀𝜔 ∈ 𝐵, {𝑓𝑛𝑘
(𝜔)} is a Cauchy Real sequence.

implying that

Sicne the real space is complete, we have ∀𝜔 ∈ 𝐵, 𝑓𝑛𝑘
(𝜔) → a limit as 𝑘 → ∞

implying that

∃ a measurable function 𝑓 𝑠.𝑡. 𝑓𝑛𝑘
→ 𝑓𝑎.𝑒.

6. It remains to show 𝑓 ∈ 𝐿𝑝(Ω, ℱ , 𝜇). i.e., ||𝑓 ||𝐿𝑝 < ∞. Using Fatou’s lemma,∫︁
lim inf|𝑓𝑛𝑘

|𝑝𝑑𝜇 ≤ lim inf
∫︁

|𝑓𝑛𝑘
|𝑝𝑑𝜇 =⇒

∫︁
|𝑓 |𝑝𝑑𝜇 ≤ lim inf

∫︁
|𝑓𝑛𝑘

|𝑝𝑑𝜇

=⇒ ||𝑓 ||𝑝𝐿𝑝 ≤ lim inf||𝑓𝑛𝑘
||𝑝𝐿𝑝 < ∞.

Theorem 1.7 (Riesz-Fischer). 𝐿𝑝(Ω, ℱ , 𝜇) is complete.

Proof. Given 𝑝 ∈ [1, ∞). Then, fixing an arbitrary 𝜖 > 0, there exists 𝑁𝜖 such that
for any 𝑛, 𝑚 ≥ 𝑁𝜖, ||𝑓𝑛 − 𝑓𝑚||𝐿𝑝 ≤ 𝜖. The previous lemma then states there exists
{𝑛𝑘}𝑘=1,2,... and there exists a measurable 𝑓 ∈ 𝐿𝑝(Ω, ℱ , 𝜇) such that 𝑓𝑛𝑘

𝑘→∞→ 𝑓 a.e.
Then, for any 𝑛 ≥ 𝑁𝜖,∫︁

|𝑓𝑛 − 𝑓 |𝑝𝑑𝜇 =
∫︁

lim
𝑘→∞

|𝑓𝑛 − 𝑓𝑛𝑘
|𝑝𝑑𝜇

≤ lim inf
∫︁

|𝑓𝑛 − 𝑓𝑛𝑘
|𝑝𝑑𝜇 ∵ Fatou’s lemma = lim inf

𝑘→∞
||𝑓𝑛 − 𝑓𝑛𝑘

||𝑝𝐿𝑝

≤ 𝜖𝑝

for any 𝑘 large enough. This means LHS = ||𝑓𝑛 − 𝑓 ||𝑝𝐿𝑝 ≤ 𝜖𝑝 =⇒ ||𝑓𝑛 − 𝑓 ||𝐿𝑝 → 0 as
𝑛 → ∞ =⇒ 𝑓𝑛 → 𝑓 a.e. The case when 𝑝 = ∞ is left to prove. In conclusion, 𝐿𝑝

space is complete.

Theorem 1.8 (Lyapunov theorem). Consider (Ω, ℱ ,P) to be a probability space. Let 𝑓 :
Ω → R

* be measurable. Then as long as 𝑝 ≤ 𝑞 ∈ [1, ∞], then ||𝑓 ||𝐿𝑝 ≤ ||𝑓 ||𝐿𝑞 . i.e.,
||𝑓 ||𝐿𝑝 increasing w.r.t. 𝑝.
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Proof. It is based on Jensen by realizing

𝜑 : 𝑥 → |𝑥|
𝑞
𝑝

is convex when 1 ≤ 𝑝 ≤ 𝑞 < ∞. Then

||𝑓 ||𝑞𝐿𝑝 =
(︂∫︁

|𝑓 |𝑝𝑑𝜇

)︂ 𝑞
𝑝

= 𝜑

(︂∫︁
|𝑓 |𝑝𝑑𝜇

)︂
≤

∫︁
𝜑(|𝑓 |𝑝)𝑑𝜇

=
∫︁

|𝑓 |𝑝· 𝑞
𝑝 𝑑𝜇

=
∫︁

|𝑓 |𝑞𝑑𝜇

≤ ||𝑓 ||𝑞𝐿𝑞 .

So ||𝑓 ||𝐿𝑝 ≤ ||𝑓 ||𝐿𝑞 . If, on the other hand, 𝑞 = ∞, ||𝑓 ||𝐿𝑝 = (
∫︀

|𝑓 |𝑝𝑑𝜇)
1
𝑝 ≤ (||𝑓 ||𝑝𝐿∞

∫︀
1𝑑𝜇)

1
𝑝 =

||𝑓 ||𝐿∞ . If 𝑝 = 𝑞 = ∞, there is nothing to prove.
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Starting today, we will talk about probability theory built on measure theory.

1 Random variable
Definition 1.1 (Random variable). A random variable is a measurable function 𝑋 : (Ω, ℱ ,P) →
(Ω′, ℱ ′) where P(Ω) = 1 and Ω′ is an object space.

Remark 1.2. • In this class, we focused on real-valued random variables 𝑋 : (Ω, ℱ ,P) →
(R, ℬ(R)).

• P(𝑋 ∈ 𝐴) for some 𝐴 ∈ ℬ(R) is defined to be P({𝜔 ∈ Ω : 𝑋(𝜔) ∈ 𝐴}).
• If there are two random variables 𝑋, 𝑌 defined on some (Ω, ℱ ,P) then

P({𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵}) := P({𝜔 ∈ Ω : 𝑋(𝜔) ∈ 𝐴, 𝑌 (𝜔) ∈ 𝐵}).

• For any 𝑓 : R → R, 𝑓(𝑋) := 𝑓 ∘ 𝑋. e.g., if 𝑓(𝑥) = 𝑥2, then 𝑓(𝑋) = 𝑋2 i.e.,
𝑓(𝑋(𝜔)) = (𝑋(𝜔))2.

• The “𝜎-algebra generated by a random variable 𝑋” is defined to be 𝜎(𝑋) :=
𝑋−1(ℬ(R)). i.e. 𝜎(𝑋) is the smallest 𝜎-algebra in Ω such that 𝑋 is still measur-
able.

• If {𝑋𝑖}𝑖∈ℐ (ℐ is a general index set NOT necessarily countable) is a collection of
RVs defined on the same probability space: 𝑋𝑖 : (Ω, ℱ ,P) → (R, ℬ(R)), then the
𝜎-algebra generated by {𝑋𝑖}𝑖∈ℐ is defined to be 𝜎

(︀
{𝑋𝑖}𝑖∈ℐ

)︀
:= 𝜎(⋃︀𝑖∈ℐ 𝜎(𝑋𝑖)).

1.1 Cumulative distribution function
Definition 1.3 (Cumulative distribution function (CDF)). Cumulative distribution function
(CDF) w.r.t. a RV 𝑋 is defined as 𝐹𝑋 : R → [0, 1] such that 𝐹𝑋(𝑡) := P(𝑋 ≤ 𝑡) =
P({𝜔 : 𝑋(𝜔) ≤ 𝑡}).

Theorem 1.4. Suppose 𝐹 : R → [0, 1] such that it is non-decreasing, right-continuous,
and lim𝑡→−∞ 𝐹 (𝑡) = 0 and lim𝑡→∞ 𝐹 (𝑡) = 1. Then ∃ a probability space (Ω, ℱ ,P) and
a RV 𝑋 over it such that 𝐹 is the CDF of 𝑋. Conversely, if 𝑋 is a RV on (Ω, ℱ ,P),
then 𝐹𝑋 satisfies the properties above.

Proof. Define (Ω, ℱ ,P) :=
(︁
[0, 1], ℬ(R) ∩ [0, 1], 𝜆|[0,1]

)︁
and 𝑋(𝜔) := inf{𝑡 ∈ R : 𝐹 (𝑡) ≥ 𝜔}.

The 𝑋 is called the generalized inverse of 𝐹 (𝐹 −) or quantile transformation. It can
be verified that 𝑋 indeed has CDF = F. Then by 512 knowledge, we can complete the
proof.
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1.2 The law of a random variable

Definition 1.5 (The law of random variable). The law of a random variable 𝑋 is the induced
probability measure, denoted as 𝜇𝑋(P𝑋), over (R, ℬ(R)) such that 𝜇𝑋(𝐴) = P(𝑋 ∈ 𝐴)

Remark 1.6. If 𝑋 and 𝑌 have the same law, and 𝑔 : R → R is a measurable function,
then 𝑔(𝑋) and 𝑔(𝑌 ) also have the same law.

Theorem 1.7. Two random variables have the same CDF if and only if they have the
same law.

Proof. The backward direction is trivial. To prove the forward direction, suppose
𝐹𝑋 = 𝐹𝑌 . Then ∀𝑡 ∈ R, P(𝑋 ≤ 𝑡) = P(𝑌 ≤ 𝑡) or 𝜇𝑋((−∞, 𝑡]) = 𝜇𝑌 ((−∞, 𝑡]). Then,
by the uniqueness extension theorem, 𝜇𝑋 = 𝜇𝑌 over 𝜎({(−∞, 𝑡]; 𝑡 ∈ R}).

1.3 Probability density function

The probability density function is usually introduced using Radon-Nykodym theorem
plus Lebesgue decomposition theorem, and is the Radon-Nykodym derivative between
two laws.

Definition 1.8 (Probability density function (PDF)). Suppose we have a function 𝑓 : R → R

such that it is nonnegative, integrable,
∫︀
R

𝑓(𝑥)𝑑𝜆(𝑥) = 1. Then it defines a probability
measure over (R, ℬ(𝑅)) :

𝜈(𝐴) :=
∫︁

𝐴
𝑓(𝑥)𝑑𝜆(𝑥).

The function 𝑓 is said to be the pdf of 𝜈(·), which is the law of a continuous RV.

Theorem 1.9. A function 𝑓 is the pdf of a RV 𝑋 (i.e., 𝑓 is the pdf of 𝜇𝑋) if and only if
∀𝐴 = [𝑎, 𝑏] with 𝑎, 𝑏 to be any continuity points of 𝐹𝑋 , we have 𝜇𝑋(𝐴) =

∫︀
𝐴 𝑓(𝑥)𝑑𝑥.

Proof. The proof is left as a homework problem.

Theorem 1.10. If 𝑓, 𝑔 corresponds to the same law, then 𝑓 = 𝑔 a.e.

Theorem 1.11. If 𝑓 is the pdf, then 𝐹 (𝑡) :=
∫︀ 𝑡

−∞ 𝑓(𝑦)𝑑𝜆(𝑦) is the CDF of the law that 𝑓
corresponds to. Conversely, if 𝐹 is a CDF on R for which there exists a nonnegative
measurable function 𝑓 satisfying 𝐹 (𝑡) :=

∫︀ 𝑡
−∞ 𝑓(𝑦)𝑑𝜆(𝑦) for all 𝑡, then 𝑓 is a pdf

generating the probability measure corresponding to 𝐹 .

2 Expectation
Definition 2.1 (Expectation). For random variblae 𝑋 : (Ω, ℱ ,P) → (R, ℬ(R)), the expec-
tation of 𝑋 is defined as

E[𝑋] :=
∫︁

Ω
𝑋(𝜔)𝑑P(𝜔)

provided that the integral is well-defined.
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Theorem 2.2 (The unconscious statistician theorem). If the RV 𝑋 has the law 𝜇𝑋 , then, for
any measurable function 𝑔 : (R, ℬ(R)) → (R, ℬ(R)). We claim that

E[𝑔(𝑋)] =
∫︁

Ω
𝑔(𝑋(𝜔))𝑑P(𝜔)

=
∫︁
R

𝑔(𝑥)𝑑𝜇𝑋(𝑥)

=
∫︁
R

𝑔(𝑥)𝑓(𝑥)𝑑𝜆(𝑥).

Proof. We divide the proof by cases: super simple function, NSF, nonnegative function,
and general function.

Remark 2.3. If 𝑋 ≥ 0, then E[𝑋] =
∫︀∞

0 P(𝑋 ≥ 𝑡)𝑑𝜆(𝑡).

The definitions of variance, covariance, moment generating function, characteristic
function can be defined based on the expectation. See details in the textbook.

3 Independence
Definition 3.1 (Independence of 𝜎-algebras). Consider (Ω, ℱ ,P) and ℱ1, ℱ2, . . . , ℱ𝑛 ⊆ ℱ
to be a 𝑠𝑢𝑏-𝜎-algebras of ℱ . Then we say ℱ1, . . . , ℱ𝑛 are independent if for any
𝐴1 ∈ ℱ1, 𝐴2 ∈ ℱ2, . . . , 𝐴𝑛 ∈ ℱ𝑛, we have

P
(︃

𝑛⋂︁
𝑖=1

𝐴𝑖

)︃
=

𝑛∏︁
𝑖=1

P(𝐴𝑖).

Definition 3.2 (General definition of independence). Any collection {ℱ𝑖}𝑖∈ℐ with ℱ𝑖 ⊆ ℱ is
said to be independent if any finitely many of them is independent.

Definition 3.3 (Independence of sets). Any collection {𝐴𝑖}𝑖∈ℐ with 𝐴𝑖 ∈ ℱ is said to be
independent if ANY FINITELY many 𝜎({𝐴𝑖}) are independent.

Definition 3.4 (Definition of independent of RVs). Any collection {𝑋𝑖}𝑖∈ℐ is said to be
independent if {𝜎(𝑋𝑖)}𝑖∈ℐ are independent.
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1 Independence
Definition 1.1 (Independence of 𝜎-algebras). Consider (Ω, ℱ ,P) and ℱ1, ℱ2, . . . , ℱ𝑛 ⊆ ℱ
to be a 𝑠𝑢𝑏-𝜎-algebras of ℱ . Then we say ℱ1, . . . , ℱ𝑛 are independent if for any
𝐴1 ∈ ℱ1, 𝐴2 ∈ ℱ2, . . . , 𝐴𝑛 ∈ ℱ𝑛, we have

P
(︃

𝑛⋂︁
𝑖=1

𝐴𝑖

)︃
=

𝑛∏︁
𝑖=1

P(𝐴𝑖).

Definition 1.2 (General definition of independence). Any collection {ℱ𝑖}𝑖∈ℐ with ℱ𝑖 ⊆ ℱ is
said to be independent if any finitely many of them is independent.

Definition 1.3 (Independence of sets). Any collection {𝐴𝑖}𝑖∈ℐ with 𝐴𝑖 ∈ ℱ is said to be
independent if ANY FINITELY many 𝜎({𝐴𝑖}) are independent.

Definition 1.4 (Definition of independent of RVs). Any collection {𝑋𝑖}𝑖∈ℐ is said to be
independent if {𝜎(𝑋𝑖)}𝑖∈ℐ are independent.

Lemma 1.5 (Borel-Contalli). 1. As long as {𝐴𝑛}∞
𝑛=1 satisfies

∑︀∞
𝑛=1 P(𝐴𝑛) < ∞ (no

conditions on P or 𝐴𝑖’s), then P({𝑤 : 𝑤 is in infinitely many 𝐴𝑛’s}) = 0.
2. If {𝐴𝑛}∞

𝑛=1 are independent, (i.e., any finitely many 𝜎(𝐴𝑖) are independent), then
as long as

∑︀∞
𝑛=1 P(𝐴𝑛) = ∞, then P({𝑤 : 𝑤 is in infinitely many 𝐴𝑛’s}) = 1

2 Four notions of convergence of RVs
Definition 2.1 (Almost surely convergence). A sequence of RVs {𝑋𝑛}∞

𝑛=1 is said to be
converging almost surely to another RV 𝑋 (𝑋𝑛 → 𝑋 a.e.) if

1. All RVs, {𝑋𝑛} and 𝑋, are over the same probability space (Ω, ℱ ,P);
2. lim𝑛→∞ 𝑋𝑛 = 𝑋 a.e. (lim𝑛→∞ 𝑓𝑛 = 𝑓, 𝑎.𝑒.).

Definition 2.2 (Converging in probability). A sequence of RVs {𝑋𝑛}∞
𝑛=1 is said to be converging

in probability to another RV 𝑋 (𝑋𝑛
𝑝→ 𝑋) if

1. All RVs, {𝑋𝑛} and 𝑋, are over the same probability space (Ω, ℱ ,P);
2. For any 𝜖 > 0, we have lim𝑛→∞ P(|𝑋𝑛 − 𝑋| > 𝜖) = 0.

Definition 2.3 (Converging in 𝐿𝑝 norm). Consider 𝑝 ∈ [1, ∞]. A sequence of RVs {𝑋𝑛}∞
𝑛=1

is said to be converging in 𝐿𝑝 norm to another RV 𝑋 (𝑋𝑛
𝐿𝑝

→ 𝑋) if

1. All RVs, {𝑋𝑛} and 𝑋, are over the same probability space (Ω, ℱ ,P);
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2. ||𝑋𝑛 − 𝑋||𝐿𝑝 → 0 as 𝑛 → ∞.

Definition 2.4 (Converging in distribution/weak convergence). A sequence of RVs {𝑋𝑛}∞
𝑛=1,

each of a CDF {𝐹𝑛}, is said to be converging in distribution or weakly convergent to
another RV 𝑋, of a CDF 𝐹 , (𝑋𝑛

𝑑→ 𝑋) if for any continuity points 𝑡 of 𝐹 , we have
lim𝑛→∞ 𝐹𝑛(𝑡) = 𝐹 (𝑡).

3 Relation between the 4 notes of convergence
Theorem 3.1. Convergence almost surely implies convergence in probability.

Proof. Given 𝑋𝑛
𝑎.𝑠.→ 𝑋, we have

P(lim 𝑋𝑛 = 𝑋) = 1 ⇐⇒ P(∀𝜖 > 0, ∃ 𝑛𝜖, 𝑠.𝑡. ∀𝑛 > 𝑛𝜖, |𝑋𝑛 − 𝑋| ≤ 𝜖) = 1.

By fixing 𝜖 > 0, we obtain

1 = P(∃𝑛, 𝑠.𝑡. ∀𝑘 ≥ 𝑛, |𝑋𝑘 − 𝑋| ≤ 𝜖)
= P(∪∞

𝑛=1 ∩∞
𝑘=𝑛 {|𝑋𝑘 − 𝑋| ≤ 𝜖})

= P(∪∞
𝑛=1𝐴𝑛)

= lim
𝑛→∞

P(𝐴𝑛) ∵ 𝐴𝑛 is non-decreasing

= lim
𝑛→∞

P(∩∞
𝑘=𝑛{|𝑋𝑘 − 𝑋| ≤ 𝜖})

≤ lim
𝑛→∞

P(|𝑋𝑛 − 𝑋| ≤ 𝜖)

≤ 1.

So lim𝑛→∞ P(|𝑋𝑛 − 𝑋| ≤ 𝜖) = 1.

Theorem 3.2 (Riesz). Given 𝑋𝑛
𝑝→ 𝑋, there exists a subsequence {𝑛𝑘}𝑘≥1 such that

𝑋𝑛𝑘

𝑎.𝑠.→ 𝑋.

Proof. It is similar to the proof of Riesz-Fischer theorem (i.e., 𝐿𝑝 space is com-
plete. Given 𝑋𝑛

𝑝→ 𝑋, we have for any 𝜖 > 0, lim𝑛→∞ P(|𝑋𝑛 − 𝑋| > 𝜖) = 0 which
means for any 𝜖 > 0 and any 𝛿 > 0, there exists 𝑛 such that for any 𝐾 > 𝑛,
P(|𝑋𝑘 − 𝑋| > 𝛿). Now choose 𝜖 = 2−𝑘−1 and 𝛿 = 2−𝑘, then there exists 𝑛𝑘 such
that for any 𝑚 > 𝑛𝑘, P

(︁
|𝑋𝑚 − 𝑋| > 2−𝑘−1

)︁
≤ 2−𝑘. We can similarly pick 𝑛𝑘 and

𝑛𝑘+1 such that P
(︁
|𝑋𝑛𝑘

− 𝑋| > 2−𝐾−1
)︁

< 2−𝑘 and P
(︁⃒⃒

𝑋𝑛𝑘+1 − 𝑋
⃒⃒

> 2−𝑘−1
)︁

< 2−𝑘. It

means P
(︁⃒⃒

𝑋𝑛𝑘+1 − 𝑋𝑛𝑘

⃒⃒
> 2−𝑘−12

)︁
≤ 2 · 2−𝑘. By the proof of 𝐿𝑝 completeness theorem,

we established {𝑋𝑛𝑘
(𝜔)}∞

𝑘=1 is a Cauchy sequence for almost all 𝜔. Thus, there exists
some 𝑌 such that 𝑋𝑛𝑘

(𝜔) → 𝑌 (𝜔) a.e. (i.e. 𝑋𝑛𝑘

𝑎.𝑒.→ some RV 𝑌 . It remains to show
𝑋 = 𝑌 a.e. If 𝑋𝑛

𝑝→ 𝑋 and 𝑋𝑛𝑘

𝑎.𝑠.→ 𝑌 , then 𝑋 = 𝑌 a.s., completing the proof.

Theorem 3.3. Convergence in probability implies convergence in distribution.
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Proof. Fix an 𝜖 > 0. Then 𝐹𝑋𝑛(𝑡) := P(𝑋𝑛 ≤ 𝑡) = P(𝑋𝑛 − 𝑋 + 𝑋 ≤ 𝑡). Observe that
{𝑋𝑛 − 𝑋 + 𝑋 ≤ 𝑡} ⊆ {𝑋 ≤ 𝑡 + 𝜖} ∪ {|𝑋𝑛 − 𝑋| > 𝜖}. So

P(𝑋𝑛 − 𝑋 + 𝑋 ≤ 𝑡) ≤ P(𝑋 ≤ 𝑡 + 𝜖) + P(|𝑋𝑛 − 𝑋| > 𝜖)

and 𝐹𝑋𝑛(𝑡) ≤ 𝐹𝑋(𝑡 + 𝜖) + P(|𝑋𝑛 − 𝑋| > 𝜖) =⇒ lim sup 𝐹𝑋𝑛(𝑡) ≤ lim sup 𝐹𝑋(𝑡 + 𝜖) +
lim supP(|𝑋𝑛 − 𝑋| > 𝜖) = lim sup 𝐹𝑋(𝑡 + 𝜖) = 𝐹𝑋(𝑡 + 𝜖). By taking 𝜖 → 0, we have
lim sup 𝐹𝑋𝑛(𝑡) ≤ 𝐹𝑋(𝑡). Symmetrically, picking 𝜖 < 0, we have lim inf 𝐹𝑋𝑛(𝑡) ≥ 𝐹𝑋(𝑡),
implying that for any continuous point 𝑡 of 𝐹𝑋 , lim 𝐹𝑋𝑛(𝑡) = 𝐹𝑋(𝑡) (i.e., 𝑋𝑛

𝑑→ 𝑋.).

Remark 3.4. The theorem is not correct if we ask for all 𝑡 including discontinuity points
of 𝐹𝑋 .

Theorem 3.5. If 𝑋𝑛
𝑑→ 𝑐 where 𝑐 is a constant, then 𝑋𝑛

𝑝→ 𝑐.
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1 Finishing convergence theorems
Theorem 1.1 (DCT). Assume

• {𝑋𝑛}, 𝑋 from (Ω, ℱ ,P) to (R, ℬ(R)),

• |𝑋𝑛| ≤ 𝑌 a.s. (domination condition),

• E[𝑌 ] < ∞ (𝑌 is in 𝐿1(P) space,

• 𝑋𝑛
𝑝→ 𝑋.

Then E[|𝑋𝑛 − 𝑋|] → 0 as 𝑛 → ∞ implies E[𝑋𝑛] → E[𝑋].

Proof. Suppose 𝑋𝑛
𝑝→ 𝑋. Then take 𝑍𝑛 := |𝑋𝑛 − 𝑋| and 𝑎 := lim sup𝑛→∞ E[𝑍𝑛] ≥ 0.

Because 𝑎 = lim supE[𝑍𝑛] by mathematical analysis, there exists a subsequence {𝑛𝑘}
such that E[𝑍𝑛𝑘

] → 𝑎. Since 𝑍𝑛
𝑝→ 0 as 𝑋𝑛

𝑝→ 𝑋, 𝑍𝑛𝑘

𝑝→ 0, and there exists
a further subsequence 𝑛𝑘′ of 𝑛𝑘 such that 𝑍𝑛𝑘′

𝑎.𝑠.→ 0 and E
[︁
𝑍𝑛𝑘′

]︁
→ 𝑎. However,

by DCT E
[︁
𝑍𝑛𝑘′

]︁
→ 0, so 𝑎 = 0. Thus 0 = lim supE[𝑍𝑛] ≥ lim inf E[𝑍𝑛] ≥ 0, so

limE[𝑍𝑛] = 0.

Theorem 1.2 (Slutsky’s theorem). If 𝑋𝑛
𝑑→ 𝑋 and 𝑌𝑛

𝑝→ 𝑐 for some constant 𝑐, then
𝑋𝑛 + 𝑌𝑛

𝑑→ 𝑋 + 𝑐 and 𝑋𝑛𝑌𝑛
𝑑→ 𝑐𝑋.

Theorem 1.3. Convergence in 𝐿𝑝 norm implies convergence in probability.

Proof. For any 𝜖 > 0, we have

lim
𝑛→∞

P(|𝑋𝑛 − 𝑋| > 𝜖) = lim
𝑛→∞

P(|𝑋𝑛 − 𝑋|𝑝 > 𝜖𝑝)

≤ lim
𝑛→∞

E[|𝑋𝑛 − 𝑋|𝑝]
𝜖𝑝

= lim
𝑛→∞

||𝑋𝑛 − 𝑋||𝑝𝐿𝑝

𝜖𝑝

= 0

Theorem 1.4. Convergence in probability implies convergence in 𝐿𝑝 norm provided that
sup|𝑋𝑛| ≤ 𝑐 < ∞ a.s.
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Proof. Use the “truncation trick”. Observe that

lim
𝑛→∞

E[|𝑋𝑛 − 𝑋|𝑝] = lim
𝑛→∞

E
[︁
|𝑋𝑛 − 𝑋|𝑝1(𝜖,∞)(|𝑋𝑛 − 𝑋|𝑝)

]︁
+ E

[︁
|𝑋𝑛 − 𝑋|𝑝1(−∞,𝜖)(|𝑋𝑛 − 𝑋|𝑝)

]︁
≤ lim

𝑛→∞
(2𝑐)𝑝 · P(|𝑋𝑛 − 𝑋|𝑝 > 𝜖) + 𝜖𝑝

≤ 𝜖𝑝.

Thus, lim𝑛→∞ E[|𝑋𝑛 − 𝑋|𝑝] = 0.

Remark 1.5. This bound is loose and the uniform boundedness assumption is strong.

2 Uniform Integrability
A much better condition than the uniform boundeness one is Vitalli’s uniform integra-
bility (u.i.)

Definition 2.1 (u.i.). A sequence of RVs {𝑋𝑛} is said to u.i. if for any 𝜖 > 0, there exists
𝐾 = 𝐾𝜖 > 0 such that sup𝑛 E[|𝑋𝑛|1(|𝑋𝑛| > 𝐾𝜖)] ≤ 𝜖.

Theorem 2.2 (Vitalli’s 𝐿1 convergence theorem). Given uniform integrable and convergences
a.s. or convergence in probability, we have 𝑋𝑛

𝐿1
→ 𝑋.

Proof. Consider another type of truncation function

𝜑𝐾(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
−𝐾 𝑥 ∈ (−∞, −𝐾)
𝑥 𝑥 ∈ [−𝐾, −𝐾]
𝐾 𝑥 ∈ (𝐾, ∞)

.

Observe that

E[|𝑋𝑛 − 𝑋|] = E[𝑋𝑛 − 𝜑𝐾(𝑋𝑛) + 𝜑𝐾(𝑋𝑛) − 𝜑𝐾(𝑋) + 𝜑𝐾(𝑋) − 𝑋]
≤ E[|𝑋𝑛 − 𝜑𝐾(𝑋𝑛)|] + E[|𝜑𝐾(𝑋𝑛) − 𝜑𝐾(𝑋)|] + E[|𝜑𝐾(𝑋) − 𝑋|]

The first term is

E
[︁
(𝑋𝑛 − 𝐾)1(𝐾,∞)(𝑋𝑛) + 01(−∞,𝐾)(|𝑋𝑛|) + (𝑋𝑛 − (−𝐾))1(−∞,−𝐾)(𝑋𝑛)

]︁
≤ sup

𝑛
E

[︁
|𝑋𝑛| · 1(𝐾,∞)(|𝑋𝑛|)

]︁
≤ 𝜖

by choosing 𝐾 > 𝐾𝜖. The second term has the property that 𝜑𝐾(𝑋𝑛) 𝐿1
→ 𝜑𝐾(𝑋)

as 𝑋𝑛
𝑝→ 𝑋 and 𝜑𝐾 is continuous implying 𝜑𝐾(𝑋𝑛) 𝑝→ Φ𝐾(𝑋). For the third

term, by u.i. and 𝑋𝑛
𝑝→ 𝑋, E[|𝑋|] < ∞ and |𝜑𝐾(𝑋) − 𝑋| ≤ |𝑋|. By DCT,

lim𝐾→∞ E[|𝜑𝐾(𝑋) − 𝑋|] = E[0] = 0 as lim𝐾→∞|𝜑𝐾(𝑋) − 𝑋| = 0. Thus, E[|𝑋𝑛 − 𝑋|] →
0.
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2.1 Sufficiency condition
How to verify uniform integrability?

Proposition 2.3 (Sufficient condition of u.i.). If there exists 𝑝 ∈ (1, ∞) such that supE[|𝑋𝑛|𝑝] <
∞, then {𝑋𝑛} is u.i.

Proof. Observe that

sup
𝑛

E
[︁
|𝑋𝑛|1(𝐾,∞)(|𝑋𝑛|)

]︁
= sup

𝑛
E

[︃
|𝑋𝑛|𝑝

|𝑋𝑛|𝑝−11(𝐾,∞)(|𝑋𝑛|)
]︃

≤ sup
𝑛

E
[︂ |𝑋𝑛|𝑝

𝐾𝑝−11(𝐾,∞)(|𝑋𝑛|)
]︂

= sup
𝑛

E
[︁
|𝑋𝑛|𝑝1(𝐾,∞)(|𝑋𝑛|)

]︁
𝐾𝑝−1

= sup
𝑛

E[|𝑋𝑛|𝑝]
𝐾𝑝−1

≤ 𝐶

𝐾𝑝−1

→ 0

as 𝐾 → ∞. In other words, for any 𝜖 > 0, there exists 𝐾 = 𝐾𝜖 such that sup𝑛 E
[︁
|𝑋𝑛|1(𝐾𝜖,∞)(|𝑋𝑛|)

]︁
≤

𝜖.

References
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1 Review
Recall that we have the following implications between notions of convergence:

• Convergence almost surely =⇒ convergence in probability,

• Convergence in probability =⇒ there exists a subsequence converging almost
surely,

• Convergence in probability =⇒ convergence in distribution,

• Convergence in 𝐿𝑝 norm =⇒ convergence in probability,

• Convergence in probability =⇒ convergence in 𝐿𝑝 norm with Vitalli uniform
integrability.

This lecture we will prove the last implication.

2 Uniform integrability
Definition 2.1 (u.i.). A sequence of RVs {𝑋𝑛} is said to u.i. if for any 𝜖 > 0, there exists
𝐾 = 𝐾𝜖 > 0 such that supE[|𝑋𝑛|1(|𝑋𝑛| > 𝐾𝜖)] ≤ 𝜖.

Proposition 2.2 (Sufficient condition of u.i.). If there exists 𝑃 ∈ (1, ∞) such that supE[|𝑋𝑛|𝑝] <
∞, then {𝑋𝑛} is u.i.

Proposition 2.3 (Necessary + sufficient for u.i.). {𝑋𝑛}𝑛≥1 is u.i. if and only if

• sup𝑛 E[|𝑋𝑛|] ≤ ∞,

• For any 𝜖 > 0, there exists 𝛿 > 0, such that for any 𝐴 ∈ ℱ satisfying P(𝐴) < 𝛿,
we have sup𝑛

∫︀
𝐴|𝑋𝑛|𝑑P < 𝜖.

Proof. Forward direction: If {𝑋𝑛} is u.i., then picking 𝜖 = 1, there exists a constant
𝐾 < ∞ such that sup𝑛 E

[︁
|𝑋𝑛|1(𝐾,∞)(|𝑋𝑛|)

]︁
≤ 1. Thus,

sup
𝑛

E[|𝑋𝑛|] = sup
𝑛

E
[︁
|𝑋𝑛|1(𝐾,∞)(|𝑋𝑛|)

]︁
+ sup

𝑛
E
[︁
|𝑋𝑛|1(−∞,𝐾)(|𝑋𝑛|)

]︁
≤ 1 + 𝐾

< ∞.
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On the other hand, for any 𝐴 ∈ ℱ and any 𝑎 > 0, we have, for any 𝑛 = 1, 2, . . . ,∫︁
𝐴

|𝑋𝑛|𝑑P =
∫︁

𝐴∩{|𝑋𝑛|≤𝑎}
|𝑋𝑛|𝑑P+

∫︁
𝐴∩{|𝑋𝑛|>𝑎}

|𝑋𝑛|𝑑P

≤
∫︁

𝐴
𝑎𝑑P+

∫︁
{|𝑋𝑛|>𝑎}

|𝑋𝑛|𝑑P

= 𝑎P(𝐴) + E
[︁
|𝑋𝑛|1(𝑎,∞)(|𝑋𝑛|)

]︁
.

The first term is small by picking P(𝐴) to be small enough. The second term is small
by u.i. and putting 𝑎 to be large.

Backward direction: Using Markov’s inequality, for any 𝑎 > 0, sup𝑛≥1 P(|𝑋𝑛| > 𝑎) ≤
sup𝑛≥1 E[|𝑋𝑛|]

𝑎 , implying that {|𝑋𝑛| > 𝑎} is converging to 0 as 𝑎 → ∞. By choosing
𝐴 = {𝜔 : |𝑋𝑛(𝜔)| > 𝑎} in the second condition, it implies u.i.

Corollary 2.4. For any integrable random variable 𝑋 (i.e., E[|𝑋|] < ∞), we have
∀𝜖 > 0, ∃𝛿 > 0, s.t. ∀𝐴 ∈ ℱ satisfying P(𝐴) < 𝛿, it is true that

∫︀
𝐴|𝑋|𝑑P < 𝜖.

Proof. By picking 𝑋1 = 𝑋2 = · · · = 𝑋𝑛 = · · · = 𝑋.

3 Strong/Weak law of large numbers
3.1 Weak law of large numbers
Theorem 3.1 (Weak law of large numbers (WLLN)). Consider 𝑋1, . . . , 𝑋𝑛 to be

• 𝐿2 bounded (i.e., E
[︁
|𝑋𝑖|2

]︁
< ∞,

• over the same probability space (Ω, ℱ ,P).

Let 𝜇𝑖 := E[𝑋𝑖], 𝜎𝑖𝑗 := Cov(𝑋𝑖, 𝑋𝑗). We claim that

1. For any 𝜖 > 0,

P
(︃⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 1
𝑛

𝑛∑︁
𝑖=1

𝜇𝑖

⃒⃒⃒⃒
⃒ > 𝜖

)︃
≤
∑︀

𝑖

∑︀
𝑗 𝜎𝑖𝑗

𝑛2𝜖2 ;

2. As long as

lim
𝑛→∞

∑︀
𝑖

∑︀
𝑗 𝜎𝑖𝑗

𝑛2 = 0,

we have
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 1
𝑛

𝑛∑︁
𝑖=1

𝜇𝑖
𝑝→ 0;

3. In particular, if

(a) {𝑋𝑖} are pairwise uncorrelated, i.e., 𝜎𝑖𝑗 = 0 if 𝑖 ̸= 𝑗;
(b) 𝜇𝑖 = 𝜇𝑗 for any 𝑖, 𝑗;
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(c) sup𝑖 𝜎𝑖𝑖 < ∞. Then 1
𝑛

∑︀𝑛
𝑖=1 𝑋𝑖

𝑝→ 𝜇 = 𝜇1.

Notice that if (a) is true, then

lim
𝑛→∞

∑︀
𝑖

∑︀
𝑗 𝜎𝑖𝑗

𝑛2 = lim
𝑛→∞

∑︀
𝑖 𝜎𝑖𝑖

𝑛2 ≤ lim
𝑛→∞

𝑛 sup𝑖 𝜎𝑖𝑖

𝑛2 ≤ sup𝑖 𝜎𝑖𝑖

𝑛
→ 0.

Proof. We only prove the first claim here. LHS is equal to

P

⎛⎝⃒⃒⃒⃒⃒ 1𝑛
𝑛∑︁

𝑖=1
(𝑋𝑖 − 𝜇𝑖)

⃒⃒⃒⃒
⃒
2

≥ 𝜖2

⎞⎠ ≤ E[
∑︀𝑛

𝑖=1(𝑋𝑖 − 𝜇𝑖)]2

𝑛2𝜖2 ∵ Markov’s inequality

=
E
[︁∑︀𝑛

𝑖=1
∑︀𝑛

𝑗=1 𝜎𝑖𝑗

]︁
𝑛2𝜖2

3.2 Strong law of large numbers
Theorem 3.2 (Strong law of large numbers (SLLN), Etemadi 1981). Assume

1. {𝑋𝑛}𝑛≥1 is pairwise independent and identically distributed;
2. E[|𝑋𝑛|] < ∞ (i.e., the mean exists).

We claim 1
𝑛

∑︀𝑛
𝑖=1 𝑋𝑖

𝑎.𝑠.→ 𝜇 =: E[𝑋1].

Proof. Step 0: We claim that we only have to consider these 𝑋𝑖’s that are nonnegative
by separately discussing 𝑋+

𝑖 and 𝑋−
𝑖 .

Step 1: Starting from here, we assume 𝑋𝑖 ≥ 0. Introduce 𝑌𝑖 := 𝑋𝑖 · 1(𝑋𝑖 < 𝑖). We
claim that as long as we can show 1

𝑛

∑︀
𝑖 𝑌𝑖

𝑎.𝑠.→ 𝜇, then 1
𝑛

∑︀
𝑖 𝑋𝑖

𝑎.𝑠.→ 𝜇. To see this, by 1st
B-C lemma,

∞∑︁
𝑖=1

P(𝑋𝑖 ̸= 𝑌𝑖) =
∞∑︁

𝑖=1
P(𝑋𝑖 ̸= 𝑋𝑖1(𝑋𝑖 < 𝑖))

≤
∞∑︁

𝑖=1
P(𝑋𝑖 ≥ 𝑖)

=
∞∑︁

𝑖=1
P(𝑋1 ≥ 𝑖) ∵ 𝑋𝑖’s are identically distributed

≤ E[𝑋𝑖]
< ∞.

This implies
∑︀∞

𝑖=1 P(𝑋𝑖 ̸= 𝑌𝑖) < ∞ =⇒ P(𝑋𝑖 ̸= 𝑌𝑖 𝑖.𝑜.) = 0 by 1st B-C lemma. This
implies 1

𝑛

∑︀𝑛
𝑖=1 𝑌𝑖 − 1

𝑛

∑︀𝑛
𝑖=1 𝑋𝑖

𝑎.𝑠.→ 0. Thus, the claim is true.
Step 2: We claim that as long as 𝑍𝑛 := 1

𝑛

∑︀𝑛
𝑖=1(𝑌𝑖 − E[𝑌𝑖])

𝑎.𝑠.→ 0, then 1
𝑛

∑︀𝑛
𝑖=1 𝑌𝑖

𝑎.𝑠.→
𝜇. To see that, it suffices to show 1

𝑛

∑︀
𝑖 E[𝑌𝑖] → 𝜇 =: E[𝑋1]. Notice that E[𝑌𝑖]−E[𝑋𝑖] =

−E
[︁
𝑋𝑖1[𝑖,∞)(𝑋𝑖)

]︁
. It is clear that 𝑋𝑖1[𝑖,∞)(𝑖) ≤ 𝑋𝑖 which has a finite expectation. By
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DCT, lim𝑖{E[𝑌𝑖] − E[𝑋𝑖]} = E
[︁
lim𝑖 −𝑋𝑖1[𝑖,∞)(𝑋𝑖)

]︁
= 0. Then, mathematical analysis

confirms 1
𝑛

∑︀𝑛
𝑖=1 E[𝑌𝑖] − 1

𝑛

∑︀𝑛
𝑖=1 𝜇 → 0 as 𝑛 → ∞.

Step 3: We claim that there exists a subsequence {𝐾𝑛}𝑛≥1 of {𝑛} s.t. 𝑍𝐾𝑛

𝑎.𝑠.→ 0.
To see this, fix an arbitrary 𝛼 > 1 and let 𝐾𝑛 := [𝛼𝑛] where [·] takes the integer part of
the input. Then we can show 𝑍𝐾𝑛

𝑎.𝑠.→ 0.
Step 4: 𝑍𝑛

𝑎.𝑠.→ 0. Denote 𝑇𝑛 :=
∑︀𝑛

𝑖=1 𝑌𝑖. Then, for any 𝑚 ∈ (𝐾𝑛, 𝐾𝑛+1), 𝑇𝑚
𝑚 ≤

𝑇𝐾𝑛+1
𝐾𝑛

= 𝑇𝐾𝑛+1
𝐾𝑛+1

· 𝐾𝑛+1
𝐾𝑛

. Also, 𝑇𝑚
𝑚 ≥ 𝑇𝐾𝑛

𝐾𝑛+1
= 𝑇𝐾𝑛

𝐾𝑛

𝐾𝑛
𝐾𝑛+1

. From step 3, 𝑇𝐾𝑛
𝐾𝑛

,
𝑇𝐾𝑛+1
𝐾𝑛+1

𝑎.𝑠.→ 𝜇

and 𝐾𝑛
𝐾𝑛+1

= 1
𝛼 and 𝐾𝑛+1

𝐾𝑛
= 𝛼. This means 𝜇

𝛼 ≤ lim inf 𝑇𝑚
𝑚 ≤ lim sup 𝑇𝑚

𝑚 ≤ 𝛼𝜇. Finally,
pushing 𝛼 to 1 yields lim𝑚→∞

𝑇𝑚
𝑚 = 𝜇.

References
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1 Famous Quote from Fang today
“Gauss probably knows more than me at his age 10.” – Fang Han

2 Strong law of large numbers, CLT

2.1 Strong law of large numbers

Theorem 2.1 (Strong law of large numbers (SLLN), Etemadi 1981). Assume

1. {𝑋𝑛}𝑛≥1 is pairwise independent and identically distributed;

2. E[|𝑋𝑛|] < ∞ (i.e., the mean exists).

We claim 1
𝑛

∑︀𝑛
𝑖=1 𝑋𝑖

𝑎.𝑠.→ 𝜇 =: E[𝑋1].

Proof. More detailed proof was in the last lecture. Here we briefly review the proof and
focus on step 3. Step 0: Only need to consider 𝑋𝑖 ≥ 0.

Step 1: Define 𝑌𝑖 := 𝑋𝑖 · 1(𝑋𝑖 ≤ 𝑖)
Step 2: Define 𝑍𝑛 := 1

𝑛

∑︀𝑛
𝑖=1(𝑌𝑖 − E[𝑌𝑖]).

Step 3: For 𝐾𝑛 = [𝛼𝑛] for some 𝛼 > 1, it holds true that 𝑍𝐾𝑛

𝑎.𝑠.→ 0.To see this, fix
any 𝜖 > 0, and check

P(|𝑍𝐾𝑛 | > 𝜖) = P
(︁
𝑍2

𝐾𝑛
> 𝜖2

)︁
≤

E
[︁
𝑍2

𝐾𝑛

]︁
𝜖2

= E[(∑︀𝑛
𝑖=1(𝑌𝑖 − E[𝑌𝑖]))]2

𝐾2
𝑛𝜖2

=
∑︀𝐾𝑛

𝑖=1 Var(𝑌𝑖)
𝐾2

𝑛𝜖2 .

The second step follows by E
[︀
𝑋2

𝑖

]︀
can be infinity but E

[︁
𝑍2

𝐾𝑛

]︁
can’t. The last step follows

by 𝑋𝑖’s are pairwise independent implying that 𝑌𝑖’s are pairwise independent, further
implying that Cov(𝑋𝑖, 𝑋𝑗) = 0 for any 𝑖 ̸= 𝑗 provided that E

[︀
𝑌 2

𝑖

]︀
< ∞. Continuing the
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proof, by 1st B-C Lemma,
∞∑︁

𝑛=1
P(|𝑍𝐾𝑛 | > 𝜖) ≤

∞∑︁
𝑛=1

∑︀
𝑘𝑛≥𝑖 Var(𝑌𝑖)

𝐾2
𝑛𝜖2

= 1
𝜖2

∞∑︁
𝑖=1

⎧⎨⎩Var(𝑌𝑖)
∑︁

𝑛:𝐾𝑛≥𝑖

1
𝐾2

𝑛

⎫⎬⎭ ∵ Fubini’s theorem

≤ 1
𝜖2

∞∑︁
𝑖=1

{︂
Var(𝑌𝑖) · 𝐶

𝑖2

}︂
∵ ∃𝐶 = 𝐶𝛼 s.t.

∞∑︁
𝐾𝑛=𝑖

1
𝐾2

𝑛

≤ 𝐶

𝑖2

= 𝐶

𝜖2

∞∑︁
𝑖=1

Var(𝑌𝑖)
𝑖2

≤ 𝐶

𝜖2

∞∑︁
𝑖=1

E
[︀
𝑌 2

𝑖

]︀
𝑖2

= 𝐶

𝜖2

∞∑︁
𝑖=1

E
[︀
𝑋2

11(𝑋1 ≤ 𝑖)
]︀

𝑖2 ∵ identical distributed

= 𝐶

𝜖2

∞∑︁
𝑖=1

E
[︂
𝑋2

1
1(𝑋𝑖 ≤ 𝑖)

𝑖2

]︂

= 𝐶

𝜖2E
[︃
𝑋2

1

∞∑︁
𝑖=1

1(𝑋𝑖 ≤ 𝑖)
𝑖2

]︃

=
∑︁

𝑖≥𝑋𝑖

1
𝑖2

≤ 𝐶 ′

𝑋1
∵ ∃𝐶 ′ s.t. the inequality holds

≤ 𝐶

𝜖2E
[︀
𝐶 ′ · 𝑋1

]︀
= 𝐶 · 𝐶 ′

𝜖2 E[𝑋1]

< ∞.

This implies that ∑︀∞
𝑛=1 P(|𝑍𝐾𝑛 | > 𝜖) < ∞. By 1st BC lemma, P(|𝑍𝐾𝑛 | > 𝜖, 𝑖.𝑜.) = 0,

implying that 𝑍𝐾𝑛

𝑎.𝑠.→ 0.
Step 4: 𝑍𝑛

𝑎.𝑠.→ 0.

3 Central limit theorem (LLT)
Theorem 3.1 (CLT, Lyapunov). Let 𝑋1, 𝑋2, . . . be i.i.d. with mean 𝜇 < ∞ and 𝜎2 < ∞.
Then

1√
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇

𝜎
𝑑→ 𝒩 (0, 1).

The approach to proving CLT is by Paul Levy using characteristic function.
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Theorem 3.2 (Levy continuity theorem). 𝑋𝑛
𝑑→ 𝑋 if and only if 𝜑𝑋𝑛(𝑡) → 𝜑𝑋(𝑡) for any

𝑡 ∈ R where 𝜑𝑋𝑛(𝑡) = E
[︁
𝑒𝑖·𝑡𝑋𝑛

]︁
and 𝜑𝑋(𝑡) = 𝑒𝑖·𝑡𝑋 .

Why do we use the characteristic function? First, Cauchy develops a form of CLT:

• E[𝑋𝑛] → E[𝑋],
• E

[︀
𝑋2

𝑛

]︀
→ E

[︀
𝑋2]︀

,

•
...

• =⇒ 𝑋𝑛
𝑑→ 𝑋

This argument requires all moments of 𝑋𝑛’s existing. Instead, the c.f. approach does
NOT require all but ONLY 1st and 2nd moment existing.

Second, if 𝑋 is a R.V. with c.f. 𝜑𝑋(·), for each 𝜃 > 0, define 𝑓𝜃(𝑥) := 1
2𝜋

∫︀
R

𝑒−𝑖·𝑡𝑥−𝜃𝑡2
𝜑𝑋(𝑡)𝑑𝑡.

Then, for any bounded continuous 𝑔 : R → R, E[𝑔(𝑋)] = lim𝜃→0
∫︀
R

𝑔(𝑥)𝑓𝜃(𝑥)𝑑𝑥 which
dependes only on 𝜑(𝑋𝑖).

Theorem 3.3 (Portmanteau Lemma). A sequence of RVs {𝑋𝑛} converges in distribution
to a RV 𝑋 if and only if for any bounded continuous 𝑔 : R → R, lim𝑛→∞ E[𝑔(𝑋𝑛)] =
E[𝑔(𝑋)]. In particular, by choosing 𝑋1 = 𝑋2 = · · · = 𝑋𝑛 = · · · = 𝑌 , Portmanteau
lemma says 𝑌

𝑑= 𝑋 if and only if for any bounded continuous 𝑔, E[𝑔(𝑌 )] = E[𝑔(𝑋)]. In
particular, with inversion formula and Portmanteau, 𝑋

𝑑= 𝑌 if and only if 𝜑𝑋(·) = 𝜑𝑌 (·).

Proof. If 𝑋
𝑑= 𝑌 , then 𝜑𝑋(·) = 𝜑𝑌 (·).

If 𝜑𝑋(·) = 𝜑𝑌 (·), then for any 𝜃 > 0, 𝑓𝑋
𝜃 (·) = 1

2𝜋

∫︀
· · · 𝜑𝑋(𝑡)𝑑𝑡 and 𝑓𝑌

𝜃 (·) =
1

2𝜋

∫︀
· · · 𝜑𝑌 (𝑡)𝑑𝑡. By inversion formula, for any bounded continuous 𝑔 : R → R,

E[𝑔(𝑋)] = lim𝜃→0
∫︀

· · · 𝑓𝑥
𝜃 (𝑡)𝑑𝑡 = lim𝜃→0

∫︀
· · · 𝑓𝑌

𝜃 (𝑡)𝑑𝑡. By Portmanteau, 𝑋
𝑑= 𝑌 .
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1 Famous Quote from Fang Today
“I’m doing the European style bowing as the people we talked about in this class are all
Europeans.” – Fang

2 Final
Here are important topics that might show up in the final exam:

• almost everywhere
• four notions of convergence
• strong/weak law of large numbers
• Fubini-Tonelli
• Random variables: law, CDF, pdf, 𝜎-algebra generated by RVs, independence,

expectation, theorem of unconscious statisticians.

3 Inervsion formula
Theorem 3.1 (Inversion formula).

E[𝑔(𝑋)] = lim
𝜃→0

∫︁ ∞

−∞
𝑔(𝑥)𝑓𝜃(𝑥)𝑑𝑥

with 𝑓𝜃(𝑥) = 1
2𝜋

∫︀∞
−∞ 𝑒−𝑖𝑡𝑥−𝜃𝑡2

𝜑𝑋(𝑡)𝑑𝑡.

Proof. Let 𝜑(𝑡) = 𝜑𝑥(𝑡) and 𝜇 be the law of 𝑋. Then

1. 𝜑(𝑡) = E
[︁
𝑒𝑖𝑡𝑋

]︁
=
∫︀∞

−∞ 𝑒𝑖𝑡𝑦𝑑𝜇(𝑦)

2. Fubini then applies to 𝑓𝜃(·), giving

𝑓𝜃(𝑥)

= 1
2𝜋

∫︁ ∞

−∞

[︂∫︁ ∞

−∞
𝑒𝑖(𝑦−𝑥)𝑡−𝜃𝑡2

𝑑𝑡

]︂
𝑑𝜇(𝑦)

= 1
2𝜋

∫︁ ∞

−∞

⎡⎣√︂𝜋

𝜃

∫︁ ∞

−∞
𝑒𝑖(2𝜃)− 1

2 (𝑦−𝑥)𝑠 · 𝑒− 𝑠2
2

√
2𝜋

𝑑𝑠

⎤⎦𝑑𝜇(𝑦) ∵ 𝜋-parameterization

= 1
2𝜋

∫︁ ∞

−∞

[︂√︂
𝜋

𝜃
𝑒− (𝑦−𝑥)2

4𝜃

]︂
𝑑𝜇(𝑦)

=
∫︁ ∞

−∞

𝑒− (𝑦−𝑥)2
4𝜃

√
4𝜋𝜃

𝑑𝜇(𝑦)



2

which is the pdf of 𝑋 + 𝑍𝜃 where 𝑍𝜃 is independent of 𝑋 and 𝑍𝜃 ∼ 𝒩 (0, 2𝜃).
Then Slutsky theorem proves since 𝑍𝜃

𝑝→ 0 as 𝜃 → 0, then 𝑋 + 𝑍𝜃
𝑑→ 𝑋,

then Portmanteau lemma shows for any bounded continuous 𝑔 : R → R,
E[𝑔(𝑋 + 𝑍𝜃)] 𝜃→0→ E[𝑔(𝑋)].

4 CLT
Lemma 4.1 (Telescoping inequality). Consider 𝑎1, · · · , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 s.t. |𝑎𝑗 | ≤ 1,
|𝑏𝑖| ≤ 1, for any 𝑖, 𝑗 = 1, 2, · · · , 𝑛. Then |

∏︀𝑛
𝑖=1 𝑎𝑖 −

∏︀𝑛
𝑖=1 𝑏𝑖| ≤

∑︀𝑛
𝑖=1|𝑎𝑖 − 𝑏𝑖|.

Lemma 4.2 (Taylor expansion). For any 𝑥 ∈ R,⃒⃒⃒⃒
⃒𝑒𝑖𝑥 − 1 − 𝑖𝑥 + 𝑥2

2

⃒⃒⃒⃒
⃒ ≤ min

{︃
|𝑥|2,

|𝑥|3

𝜎

}︃
.

Theorem 4.3 (CLT, Lyapunov). Let 𝑋1, . . . , 𝑋𝑛, . . . be i.i.d. sequence of variables with
mean 𝜇 < ∞ and variance 𝜎2 < ∞. Then

1√
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇

𝜎
𝑑→ 𝒩 (0, 1).

Proof. The proof is by Paul Levy that related 𝑑→ to the pointwise converge of 𝜑𝑋𝑛(·) →
𝜑𝑋(·) as 𝑛 → ∞.

Levys continuity theorem shows 𝑋𝑛
𝑑→ 𝑋 if and only if 𝜑𝑋𝑛(·) → 𝜑𝑋(·) pointwise

for any 𝑡 ∈ R. To prove CLT, defining 𝑆𝑛 := 1√
𝑛

∑︀𝑛
𝑖=1

𝑋𝑖−𝜇
𝜎 = 1√

𝑛

∑︀𝑛
𝑖=1 𝑍𝑖. Then it

suffices to prove for any 𝑡 ∈ R, 𝜑𝑆𝑛(𝑡) → 𝜑𝒩 (0,1)(𝑡) = 𝑒− 𝑡2
2 .

The LHS is

E
[︂
𝑒

𝑖𝑡 1√
𝑛

∑︀𝑛

𝑖=1 𝑍𝑖

]︂
= E

[︂
𝑒

𝑖 𝑡√
𝑛

𝑍1𝑒
𝑖 𝑡√

𝑛
𝑍2 · · · 𝑒

𝑖 𝑡√
𝑛

𝑍𝑛

]︂
= E

[︂
𝑒

𝑖 𝑡√
𝑛

𝑍1
]︂
E
[︂
𝑒

𝑖 𝑡√
𝑛

𝑍2
]︂

· · ·E
[︂
𝑒

𝑖 𝑡√
𝑛

𝑍𝑛

]︂
=
[︂
𝜑𝑍1

(︂
𝑡√
𝑛

)︂]︂𝑛

.

It remains to show
[︁
𝜑𝑍1

(︁
𝑡√
𝑛

)︁]︁𝑛
→ 𝑒− 𝑡2

2 = lim𝑛→∞
(︁
1 − 𝑡2

2𝑛

)︁𝑛
. So we only have to show

for any 𝑡 ∈ R, ⃒⃒⃒⃒
⃒
[︂
𝜑𝑍1

(︂
𝑡√
𝑛

)︂]︂𝑛

−
(︃

1 − 𝑡2

2𝑛

)︃𝑛 ⃒⃒⃒⃒
⃒ → 0.

By Telescoping inequality lemma,⃒⃒⃒⃒
⃒
[︂
𝜑𝑍1

(︂
𝑡√
𝑛

)︂]︂𝑛

−
(︃

1 − 𝑡2

2𝑛

)︃𝑛 ⃒⃒⃒⃒
⃒ ≤ 𝑛 ·

⃒⃒⃒⃒
⃒𝜑𝑍1

(︂
𝑡√
𝑛

)︂
−
(︃

1 − 𝑡2

2𝑛

)︃⃒⃒⃒⃒
⃒

= 𝑛 ·
⃒⃒⃒⃒
⃒E
[︃
𝑒

𝑖𝑡 𝑧√
𝑛 − 1 − 𝑖𝑡𝑍1√

𝑛
+ 𝑡2𝑧2

2𝑛

]︃⃒⃒⃒⃒
⃒.
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By Taylor expansion lemma,

𝑛 ·
⃒⃒⃒⃒
⃒E
[︃
𝑒

𝑖𝑡 𝑧√
𝑛 − 1 − 𝑖𝑡𝑍1√

𝑛
+ 𝑡2𝑧2

2𝑛

]︃⃒⃒⃒⃒
⃒ ≤ E

[︃
min

{︃
𝑡2𝑍2

1 ,
|𝑡|3|𝑍1|3

𝜎
√

𝑛

}︃]︃
∵ picking 𝑥 = 𝑡𝑧/

√
𝑛

≤ E
[︁
𝑡2𝑍2

1

]︁
.

The second line follows by picking 𝑥 = 𝑡𝑍√
𝑛

. Since 𝑡2𝑍2
1 is integrable, by DCT,

lim
𝑛→∞

⃒⃒⃒⃒
⃒
[︂
𝜑𝑍1

(︂
𝑡√
𝑛

)︂]︂𝑛

−
(︃

1 − 𝑡2

2𝑛

)︃𝑛 ⃒⃒⃒⃒
⃒ ≤ lim

𝑛→∞
E
[︃
min

{︃
𝑡2𝑍2

1 ,
|𝑡|3|𝑍1|3

𝜎
√

𝑛

}︃]︃

= E
[︃

lim
𝑛→∞

min
{︃

𝑡2𝑍2
1 ,

|𝑡|3|𝑍1|3

𝜎
√

𝑛

}︃]︃
= 0.
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