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Abstract

This is the written report on the final project of STAT 517 — Stochastic Modeling Of
Scientific Data II in Winter 2024, taught by Professor Zaid Harchaoui. The project
connects the material encountered in the course to recent methodological research
on stochastic processes. We select the paper Constructing Priors that Penalize the
Complexity of Gaussian Random Fields from |Fuglstad et al.|[2019]. In the report,
we summarize the main research problem in the selected paper, connect the main
contribution in the selected paper with materials studied in STAT 517, propose the
simplified version of the main contribution, and conduct the simulation study on
the simplified version.

1 Main Research Problem

The main research problem addressed in the paper Constructing Priors that Penalize the Complexity
of Gaussian Random Fields Fuglstad et al.| [2019] is the challenge of selecting appropriate prior
distributions for Gaussian Random Fields (GRFs) in Bayesian hierarchical models. |Fuglstad et al.
[2019] focused on one-dimensional, two-dimensional, and three-dimensional GRFs with Matérn
covariance functions with fixed smoothness, extending to nonstationary covariance structures. The
Matern covariance function creates a ridge in the joint likelihood of the range and the marginal
variance parameters [Warnes and Ripley, |[1987], and no consistent estimator exists for them under
in-fill asymptotics when the dimension of the GRF is three or lower [Stein), 2012 Zhang], |2004].

To the knowledge of [Fuglstad et al.|[2019] back then, only Berger et al.|[2001]] introduced a principled
approach to prior selection for GRFs. However, they derived reference priors for a GRF partially
observed without noise. In contrast, GRFs are often embedded in Bayesian hierarchical models in an
over-complex way to derive the reference priors [Fuglstad et al.,[2019]. And they did not provide
guidance on which hyperparameters should be selected for the prior. Therefore, the [Fuglstad et al.
[2019]] proposed a principled joint prior for the range and marginal variance of Matérn GRFs, which
is weakly informative and penalizes complexity by shrinking toward a base model with infinite range
and zero marginal variance through hyperparameters that indicate how strongly the user wishes to
shrink toward the base model. Specifically, Fuglstad et al.|[2019] used the penalized complexity
(PC) prior framework [Klein and Kneib, 2016} Simpson et al.,[2017] to construct a joint prior, which
is independent of the observation process, for the range and the marginal variance parameters of a
Matern GRF. To argue that their approach is valid, [Fuglstad et al|[2019] answered the following
three questions:

* Is the PC prior framework suitable for infinite-dimensional model components?
* How can we deal with the fact that the KLLD between Matérn GRFs in general is infinite?

* How can we construct a multivariate PC prior that properly accounts for the intrinsic link
between range and marginal variance due to the ridge in the likelihood?
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Moreover, |[Fuglstad et al.|[2019] show that the PC prior developed for the stationary Matern GRF
can be extended further to a prior for a nonstationary GRF, where the nonstationarity is controlled
by covariates. We do not discuss this extension in the report for the sake of time and space, but we
strongly encourage the audience to study this piece of work if interested.

The research problem is significant as the choice of prior distribution profoundly impacts the behavior
of the posterior of the parameters, especially under in-fill asymptotics where the likelihood provides
limited information about the covariance structure. The proposed approach aims to provide a more
principled alternative to reference priors, allowing practitioners to include expert knowledge in an
interpretable way.

2 Simplification of the Main Contribution

The core part of the main contribution in [Fuglstad et al.,2019] is their Theorem 2.6 as follows:

Theorem 1. (PC prior for the Matern(p, c)). Let u be a GRF defined on R?, where d < 3, with
a Matern covariance function with parameters o, p, v. Assume v is fixed. Then, the joint PC prior
corresponding to a base model with infinite range and zero marginal variance is

(o, p) = 5)\1)\2;)7(1/271 exp <75\1p7d/2 — 5\20) , >0, p>0

where P(p < po) = a1 and P(o > o) = g are achieved by
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In this PC prior, A1 and X, are two hyperparameters jointly control the marginal tailed probability
of p and o at py and oy with a;-level and as-level. To make this theorem more self-contained, we
present |[Fuglstad et al.|[2019]’s definition of a Matern covariance function.

Definition 1. (Matern covariance function) A Matern covariance function ¢ : [0, 00] — R can be
parameterized through a marginal standard deviation o, a range parameter p, and a smoothness
parameter v, and is given by
21—u v
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where K, is the modified Bessel function of the second kind, order v.

2.1 Derivation

We start the derivation of Theorem [I|by introducing the PC prior framework [[Simpson et al.,2017].

2.1.1 PC Prior Framework
The first step is to design a distance metric from the base model to its extension using the Kullback-
Leibler divergence (KLD).

Definition 2. (Kullback-Leibler divergence). Let Py and P be measures over the set X', where P
is absolutely continuous with respect to P, then the Kullback-Leibler divergence from Py to P is
defined as

dP
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where % is the Radon-Nikodym derivative of P with respect to F.

Let P, denote the Gaussian measure of the base model for the GRF and P denote the Gaussian
measure of the flexible extension, then the defined distance metric is dist(P||Py) = +/2KL(P|| ).

The second step is to define the prior on dist(P||Py) based on three principles:

* Occam’s razor: The prior penalizes more strongly when the flexible extension is further
from the base model



» Constant-rate penalization: The prior on the distance, ¢, satisfies
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for a constant decay rate 0 < r < 1. The only continuous distribution with this property is
the exponential distribution 7(t) = Aexp(—At) for ¢ > 0.
 User-defined scaling: The prior has a hyperparameter A that has an interpretable way for the
user to set its value.
2.1.2 Adaptation of the Framework
To adapt the PC Prior Framework for GRF with the dimension of three or lower, Fuglstad et al.|[2019]]

started by providing an alternative parameterization of the Matern covariance function in Definition

Definition 3. (Alternative parameterization of the Matern covariance function). Assume that the base
space is R and introduce
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This alternative parameterization benefits from its description that 7 can and x cannot be consistently
estimated under in-fill asymptotic when the dimension of the base space < 3 [Fuglstad et al.,|2019].
Then, if we separate the joint prior 7(7, ) by 7(7|%) and 7(k), the PC prior for 7|« must be derived
based on a finite-dimensional observation.

Theorem 2. (PC prior for 7|k). Let u be a GRF defined on D C R? with a Matern covariance
function with parameters T, k, v. If the GRF is observed on $1, Sa, ..., Sy, € D, then conditionally
on K the PC prior for T with base model T = 0 is

7(7x) = Aexp (=A1), 7T>0
where X > 0 is a hyperparameter.

To control P(¢ > o|k), the upper tail probability of the marginal standard deviation o exceeding o,
at o, we can set

I I'(v) log(c)
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Next, [Fuglstad et al.|[2019] contrusted the PC prior for  using the infinite-dimensional GRF.

Theorem 3. (PC prior for k). Let u be a GRF defined on D C R?, where d < 3, with a Matern
covariance function with parameters 7, k,v. The PC prior for k with base model k = 0 is

d
m(Kk) = 5)\/€d/2_1 exp (—)\/«id/2) , k>0

where \ > 0 is a hyperparameter.

Similarly, to control P(p < pg), the upper tail probability of the range p below pg, at a., we can set

Thus, combining the PC priors for 7|k and  provides the joint PC prior for (k,7) which further
provides the joint PC prior for (p, o) stated in Theoremby reparameterization.



2.2 Code Implementation

The coding implementation of the simplified main contribution can be found in this| Github repository.
We thank Fuglstad et al.|[2019] for distributing their original coding implementation here, though we
were unable to run the code or replicate the simulation study in [Fuglstad et al.,[2019] due to errors
in the code. We suspect that it was due to the lack of maintenance. As a result, we instead use the
method, krige.bayes (), from the package, geoR [Ribeiro Jr et al.,[2007], to conduct the Bayesian
analysis on the GRF. Since krige.bayes () cannot control the prior distribution on the marginal
variance, we treat it as a known parameter in the algorithm. The marginal prior distribution of the
range, p, can be easily derived from the joint prior in Theorem [T]as
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2.3 Connection to the Course Materials

The PC prior framework designed by |[Fuglstad et al.| [2019] has a very strong connection to the
course materials on GRF. In multiple homework problems (Homework 1, Problem 1(d); Homework
2, Problem 2(b),2(d); Homework 3, Problem 1), we were asked to fit GRFs to different data. Though
we briefly learned the Bayesian estimation framework of GRF in the course, we did not learn the
appropriate way to design the prior distribution. As an unfortunate result, most of us went with the
Frequentist estimation framework.

Now, equipped with a modern method to construct the prior distribution that penalized the model
complexity with an interpretable hyperparameter, we can fit GRFs in those homework problems
through the Bayesian approach. It may result in a more principled and interpretable fitted GRF.

3 Simulation Study

We consider a two-dimensional GRF with the spatial design of 100 locations generated uniformly
randomly on [0, 1]2. The spatial design is shown in Figure

We use the similar exponential covariance function in [Fuglstad et al.,[2019] ¢(r) = exp (—r) to
model the GRF. The covariance function implies that the frue range, pr, and true standard deviation,
or, values are 0.1 and 1. The mean vector is 0. The nugget effect parameter is also 0. In short, this is
a relatively simple GRF.

For the PC prior hyperparameters. we fix & = 0.05 and use pg = 0.025p7,p0 = 0.1pr,pg =
0.4pr, po = 1.6p7. This covers a prior where pg is much smaller than the true range, two priors
where pg is smaller than the true range, but not far away, and one prior where py is higher than the
true range [Fuglstad et al., 2019]. The density curve of 7(p) corresponding to different pg is shown
in Figure |2l As py increases, 7(p) shifts to the right and becomes more spread. This is expected as
P(p < po) = 1.

We simulate the GRF 100 times. Each time, we use 1ikfit () to extract the maximum likelihood
estimator on the range parameter and use bayes.krige () to extract the maximum a posteriori (MAP)
estimator on the range parameter. The initial range parameter value in the maximum likelihood
estimator (MLE), controlled by the argument ini.cov.pars in 1ikfit (), is set to 0.5p7 or 1.5pp
randomly. To compare the performance of two estimators, we compute their empirical 95% confidence
interval and their mean squared errors. The results are shown in the Table
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Figure 1: Spatial design for the simulation study.

Confidence Interval | Confidence Interval Width | Mean Squared Error
MLE (0.0564, 0.156) 0.0997 0.00097155
MAP (py = 0.025p7) | (0.0519,0.1553) 0.1033 0.00101570
MAP (po = 0.1p7) (0.0548,0.1595) 0.1047 0.00104922
MAP (pg = 0.4p7) (0.0604,0.1780) 0.1175 0.00131938
MAP (pg = 1.6p7) (0.0873,0.2779) 0.1907 0.00677579

Table 1: 95% empirical confidence interval, the width of 95% empirical confidence interval, and the
mean square error of MLE and MAP (with different pg values).

Comparing MAP with different p, values, we find a monotonically increasing relationship between
po and the width of its 95% empirical confidence interval. We also find a monotonically increasing
relationship between pg and the width of the mean square error.

In general, 95% empirical confidence intervals of both MLE and MAP cover the true range parameter
pr = 0.1. However, MLE outperforms all MAP with different py values in terms of both 95%
empirical confidence intervals and mean square error. MLE has the most centered 95% empirical
confidence interval at pr and has the narrowest 95% empirical confidence interval. Also, MLE has
the smallest mean square error. Observations here are interesting and not expected. As pr is known in
the Bayesian estimation framework, we expect at least one of the MAPs outperforms the MLE. There
are several potential reasons for these surprises. First, the model assumptions of our GRF are not
complex enough for the Bayesian estimation framework to stand out. The current mean vector of the
GRF is 0. We can make it more complex by setting it as a linear, quadratic, or higher-order function
of the location coordinates. Also, the marginal variance is 1, and there is no nugget effect. We can
increase the marginal variance and introduce the nugget effect to add more noise to the observed
GREF. Second, we treat the marginal variance as a known parameter, making the estimation problem
easier. As a result, the Bayesian estimation with PC prior might not be as beneficial as when we need
to jointly estimate the marginal variance and range parameters.

4 Discussion

In this report, we introduce an innovative framework, Penalized Complexity Prior, that aims to
address the difficulty of selecting appropriate prior distributions for the marginal variance and range
parameters in Gaussian Random Fields. This framework not only penalizes the complexity of the GRF
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Figure 2: The density curve of the prior distribution of the range parameter corresponding to different
Po-

but also provides an interpretable way to select the hyperparameters in the framework. We implement
the simplified framework by treating the marginal variance as fixed. We conduct a simulation study
that compares the maximum a posteriori estimator with Penalized Complexity Prior and the maximum
likelihood estimator in terms of their 95% empirical confidence intervals and mean square errors on a
simple Gaussian Random Field. To further and better compare the two estimation approaches, we
plan to implement the full framework and use it on more complex Gaussian Random Field in the
future.
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