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1 Abstract

In this report, we explore different univariate time series models and select one to fit and predict the daily
close price of Tesla Inc. in the stock market. We collect the stock market data from Yahoo Finance. After
careful model consideration and selection, we select ARIMA(1, 2, 1)×(0, 0, 0)[0] as our best mode. However,
our best model still gives relatively inaccurate predictions. Our analysis demonstrates that using a purely
statistical and mathematical tool to model the stock price data might be unrealistic. We provide suggestions
for future research on modeling stock price data in the conclusion section.

2 Introduction

Due to the increasing focus on carbon neutrality, the trend of replacing non-sustainable energy with sustain-
able energy has boomed in the past few years. As relatively environment-friendly energy, electricity has been
considered a replacement for traditional energy, such as gasoline and diesel. Among all those enterprises
pursuing commercialized carbon neutrality, Tesla, as the largest electric car company, has been pioneering
the fashion and aiming to transition the world to electric mobility. As a reflection of the public’s belief, the
stock price of Tesla has been sedentary for some time and has no evident increase until recent years. It is
known that the stock price of a company is highly associated with its real-time status. The status of Tesla
might be an adequate representation of the entire electric car industry. Thus, We are interested in building
a univariate time series model to fit and predict the stock price of Tesla so that we can predict its future
status. However, as we all know, predicting stock prices is an extremely challenging task, so our predictions
might be inaccurate.

3 Data Description

The Tesla stock price comes from Yahoo Finance. The stock price dataset consists of open price, close price,
high price, and low price of a trading day. We choose the close price to work on because it represents the
will of the main forces more than other attributes. The whole volume of data, which contains 2791 data
points, has a variance of 39768.49, max price of 1208.59, min price of 4.01, mean price of 112.4271.

4 Exploratory Data Analysis

To obtain a comprehensive understanding of the data, we first conduct explanatory data analysis (EDA).
Figure 1(a) is the time series plot of all the given data points. We observe that the stock prices of Tesla
before 2020 are averagely and considerably lower than those after 2020. The significantly different scales of
different parts of the time series make it hard to visually examine the trend and seasonality pattern of the
time series. Moreover, since the popularity of Tesla has only been significantly increasing recently, we do not
have to analyze all the available data. Therefore, for the sake of interest and convenience, we decide only to
analyze the last 300 time points, or trading days, which cover the period from 2020-08-26 to 2021-11-02
excluding weekends. Thus, whenever we use the word “data” in the following analysis, we implicitly mean
the time series of the last three hundred time points.

Figure 1(b) is the time series plot of the close prices of Tesla in the last three hundred trading days before and
including 2021-11-02. We first observe that our data is roughly homoscedastic. To verify our observation,
we try the square root and natural log transformations and judge whether they effectively stabilize the
variance of the time series. Their plots are below in Figure 2.

We can see that both transformations unnecessarily increase the variance of the time series before mid-
November in 2020 and do not change the variance of other time series data. Although both transformations
shorten the vertical distance between the maximum and minimum of the time series after Oct. 2021, the spike
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Figure 1: (a) Time series plot of all available trading days. (b) Time series plot of last 300 trading days

500

750

1000

1250

O
ct

 2
02

0

Ja
n 

20
21

A
pr

 2
02

1

Ju
l 2

02
1

O
ct

 2
02

1

Date

C
lo

se
 P

ric
e 

(D
ol

la
rs

)

(a)

500

750

1000

1250

O
ct

 2
02

0

Ja
n 

20
21

A
pr

 2
02

1

Ju
l 2

02
1

O
ct

 2
02

1

Date

C
lo

se
 P

ric
e 

(D
ol

la
rs

)

(b)

500

700

1000

O
ct

 2
02

0

Ja
n 

20
21

A
pr

 2
02

1

Ju
l 2

02
1

O
ct

 2
02

1

Date

C
lo

se
 P

ric
e 

(D
ol

la
rs

)

(c)

Figure 2: (a): Original time series. (b): Square root transfromed time seires. (c): Natural log transformed
time series.
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after Oct. 2021 is more like an increasing trend than a considerable fluctuation. In short, both transformations
are redundant, and we do not need to use any variance stabilizing transformation.

Back to Figure 1(b), intuitively, the data is not stationary because of a nonlinear and generally increasing
trend. The trend first increases until around Feb. 2021 and then decreases until around mid-May. 2021.
Finally, the trend increases again until the end of the time series. Nonetheless, we do not observe an obvious
or significant seasonality pattern. It matches the intuition since the granularity of our data is day, and the
structure of daily stock price data is too complicated to have a seasonality pattern.

In conclusion, based on all the previous discussions in EDA, we decide to construct possible models on the
original time series data, including only the last three hundred time points.

5 Model Construction

With a comprehensive understanding of our data, we start to experiment and construct different time series
models. We choose and build two non-parametric signal models of the trend and seasonality in our data. We
aim to make the residuals obtained from removing the signalsapproximately weekly stationary. We do not
consider any parametric trend model because we think the trend of the stock price data is too complicated to
be modeled by a parametric model, such as a high-order polynomial. Indeed, we could use a 15 or 20 order
polynomial, but it may overfit the training data and produce imprecise predictions. We do not consider a
parametric seasonality model either because we do not find a clear seasonality pattern in our data by the
EDA. Finally, based on each signal model, we provide two ARMA models or its extensions, such as SARMA
or ARIMA, to whiten the residuals of the signal model. Thus, we have four candidate models, and we will
explain how we select a final model among them in the next section.

5.1 Non-parametric Signal Model: exponential smoothing

In this signal model, we choose exponential smoothing with weight α = 0.9 and lag k = 10 and a seasonal
differencing with period d = 5.
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Figure 3: (a): Time series plot of the original data and fitted values. (b): The residual plot of exponential
smoothing.
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We experiment with different combinations of α and k with a careful consideration of overfitting issue. We
choose k = 10 as the final value because we want only to use the past two weeks, which are ten days in our
data, to forecast. We choose α = 0.9 as the final value because we think it best balances the smoothing effect
and the capture of trend pattern among (0, 1). Indeed, the smoothing line in Figure 3(a) fits the data in the
way we want. Note that we lose the first nine time points due to the computation process of the exponential
smoothing.

However, the residual plot Figure 3(b) is fairly non-stationary, as it has a cycling fluctuation pattern and
still a slightly nonlinear trend. It might be due to that we intentionally let exponential smoothing not fit
the data perfectly. Next, we use the seasonal differencing with period d = 5, which is one week in our data,
to make further the residuals more stationary.
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Figure 4: (a): Time series plot of the seasonal differenced (d = 5) residuals from the previous smoothing.

Indeed, now the differenced residuals have become more stationary. There seems to be a contradiction that
recalling in EDA, we claim that there is not a clear seasonality in our data. However, the effect of the seasonal
differencing here implies a possible seasonality with period d = 5. We think it might be that the seasonal
differencing is removing the remaining trend left by the exponential smoothing instead of the seasonality.
Nevertheless, We believe that the time series of the differenced residuals shown in Figure 4(a) is stationary
enough for us to build ARMA models on it. For convenience, we use “residuals” to represent “the seasonal
differenced residuals” in the following two subsections.

5.1.1 ARMA 1A: ARIMA(1, 0, 3)× (0, 0, 1)[5]

After acquiring approximately stationary residuals from the signal model, we use the ARMA model to
model the residuals further to predict future residuals reasonably. Then, summing the predicted residuals
and signals gives us the prediction of the original time series, stock price. To obtain the intuition for choosing
the ARMA model, we use the sample ACF and PACF plots of the residuals shown in Figure 5.

If we ignore lag 5 temporarily in the ACF plot, we observe an approximate cutoff after lag 3, so MA(3)
seems to be a reasonable choice. However, if we temporarily ignore lag multiples of 5, the PACF plot also
seems to have a cutoff after lag 1. Then, a simple MA(3) model becomes invalid. AR(1) is also invalid for
the same reason. To handle the spikes at lag 5 in ACF and lag multiples of 5 in PACF, we may consider
seasonal MA or AR with period d = 5. To select one model, we will compute and compare AIC, AICc, BIC,
and cross-validation errors of models that are ARMA(1,3) plus different orders of seasonal MA or AR. Then,
the one that has best performance in terms of these four criterions will be chosen. After careful selection,
we choose ARIMA(1, 0, 3)× (0, 0, 1)[5]. See the code appendix for more details about the selection process.

To assess our model, we visualize different model diagnostics methods in Figure 6. The standardized residuals
seem to have an i.i.d. standard normal distribution with a slightly larger variance. In the ACF plot of
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Figure 5: The sample ACF and PACF plots of the residuals from expo. smoothing
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Figure 6: Model diagnostics plots of ARIMA(1,0,3)x(0,0,1)[5]
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residuals, almost all the spikes lie within a 95% confidence interval. The normal q-q plot implies a slightly
fatter tail distribution than the normal distribution, but we can still claim the validity of the normality
assumption. The p-values of all the Ljung-Box statistics are above 0.05, so we fail to reject the null hypothesis
that the data was generated from our candidate ARMA model. In summary, all the model diagnostics
methods imply that our candidate ARMA model is considered reasonable. We call this model “ARMA 1A”.

5.1.2 ARMA 1B: ARIMA(1, 0, 1)× (0, 0, 1)[5]

Here we provide a different way to model the seasonal differenced residuals.

From the ACF and PACF plots of the residuals in Figure 5, we can observe a negative spike at lag = 5 for
both plots. If we do not ignore the spikes at some lag = 5 in ACF plot, as we did in ARMA 1A, neither the
ACF or the PACF plot has a reasonable cutoff. Thus, we need to choose both p > 0 and q > 0.

auto.arima() returns a ARIMA(2, 0, 3)×(0, 0, 0)[5] model but with bad diagnostics performance. Nonethe-
less, we can still treat it as a reference model and develop a better model based on it. We will use the
same selection process for selecting ARMA 1A. See the code appendix for more details. We end up with
ARIMA(1, 0, 1)× (0, 0, 1)[5] model.
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Figure 7: Model diagnostics plots of ARIMA(1,0,1)x(0,0,1)[5]

The diagnostics plots in Figure 7 provide highly similar information to those of ARMA 1A. For example, all
the p-values of Ljung-Box statistics are large. Thus, we consider this model as a reasonable one and call it
“ARMA 1B”.

5.2 Non-parametric Signal Model: second-order differencing

In this model, we choose the second-order differencing to remove the trend. After the first-order differencing,
we observe that there is still some trend pattern, such as the increasing one between 270 and 300, as shown
by Figure 8(a). This matches our previous analysis that the trend of our data is nonlinear in EDA. Thus,
we take another differencing and acquire the second-order differencing data shown in Figure 8(b).

The second-order differenced time series, denoted by Zt, is more stationary than the first-order differenced
time series. We can keep trying more higher-order differencings, but they may overfit our data. Therefore,
we stop at the second-order differenced time series Zt, which is already stationary enough for us to build an
ARMA model on it.

7



0 50 100 150 200 250 300

−
50

50
(a)

Index

D
iff

er
en

ce
d 

D
at

a

0 50 100 150 200 250 300

−
10

0
0

10
0

(b)

Index

D
iff

er
en

ce
d 

D
at

a

Figure 8: (a): The first-order differenced data. (b): The second-order differenced data.

5.2.1 ARMA 2A: ARIMA(1, 0, 1)× (0, 0, 0)[0]

Based on Zt, we continue our modeling by finding and fitting a suitable ARMA model on it. To obtain some
intuition, we first plot the sample ACF and PACF of Zt in Figure 9 as we did for the seasonal differenced
residuals.
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Figure 9: The sample ACF and PACF plots of Zt

From the ACF plot of Zt, we observe a rough cutoff after lag 1, so MA(1) seems to be a reasonable choice,
but we are not completely sure. Moreover, we are not sure about the order of p. We use the auto.arima()
to help us find the suitable p, and the function returns a ARIMA(1, 0, 1)× (0, 0, 0)[0] model on Zt. We will
accept this model.

Because the performance of the diagnostics plots in Figure 10 is similar to those of ARMA 1A and 1B
models, our model choice here is reasonable.

5.2.2 ARMA 2B: ARIMA(4, 0, 1)× (0, 0, 0)[0]

We provide a second way to model the second-ordered differenced time series Zt.

In the PACF plot of Zt in Figure 9, the magnitude of PACF is decreasing significantly from lag 1 to lag
5, so there might be a cutoff around lag 5. From the ACF plot of Zt, we observe an evident cutoff of the
magnitude of ACF occurs at lag 1. Therefore, we cannot use a simple MA or AR model. We use the same
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Figure 10: Model diagnostics plots of ARIMA(1,0,1)x(0,0,0)[0]

model selection process as before. See the code appendix for more details. We experiment with different
combinations of p ∈ {4, 5, 6} and of q ∈ {0, 1}. We end up with ARIMA(4, 0, 1)× (0, 0, 0)[0]

Because the performance of the diagnostics plots is similar to those of the previous three models, which
means our model choice here is reasonable, and we do not include them. See the code for plotting them.

6 Model Comparision and Selection

With four carefully chosen models, we need to select a final model that best fits the data. However, it is
dangerous to blindly choose an overcomplicated model that can perfectly match the given data because the
model may also fit the noise in the data. We only want our model to capture the true underlying pattern of
the data to be generalized to unseen data well. Otherwise, our prediction might be too noisy and far away
from the actual value. This issue is known as overfitting.

To lessen the overfitting issue as much as possible, we compute and compare each model’s AIC, AICc, BIC,
and cross-validation error. The first three criterion measures the fitness of a model on the in-sample data
while penalizing the complexity of the model. The last one measures the predictability of a model on the
out-of-sample data. Then, we will select the model that has the best performance with careful consideration
of all four criterions. See the code appendix for more details about the selection process.

We summarize the criterion values of all the models into Table 1:

Table 1: Criterion values of each model

Index Model CV.error AIC AICc BIC
1 Expo. smoothing + ARMA 1A 5492.341 8.898896 8.899949 8.988378
2 Expo. smoothing + ARMA 1B 5521.305 8.886808 8.887305 8.950724
3 2nd-order Diff. + ARMA 2A 4507.891 9.231862 9.232136 9.281488
4 2nd-order Diff. + ARMA 2B 4413.298 9.249888 9.250857 9.336733

Interestingly, the models using exponential smoothing have higher cross-validation errors but smaller AIC,
AICc, and BIC than those using second-order differencing. It could be that our exponential smoothing
model is more overfitting than the second-order differencing model. Because the average difference between
cross-validation errors of second-order differencing models and exponential smoothing models is much larger
than the the average difference between AIC, AICc, and BIC of two models, we will select one model from
two second-order differencing models. Now, since the criterions of model 4 and 5 are very close to each other,
we will choose model 3 because it has fewer parameters than model 4 to avoid potential overfitting. The
choice here is somewhat arbitrary. 9



There is a caveat that we extract the AIC, BIC, and AICc of these four models directly from their sarima()
fitted results. However, the exponential smoothing cannot be directly involved in sarima() while the second-
order differencing can be. This discrepancy might bias the measured criterions. For the simplicity of this
report, we ignore this discrepancy, although we recommend further exploration of it.

7 Final Model

From the model selection process, we choose second-order differencing with ARMA 2A as our final model.
We will give the specific formula of our model and its prediction for future ten time points.

7.1 Model Expression

To write out the formula, we denote the original time series, close price, by {Xt}. Then, our model has the
form

(1− φ1B)(∇2Xt − µt) = (1 + θ1B)Wt

where Wt ∼WN(0, σ2) and µt is a constant. The estimations of the parameters are in the Table 2.

Table 2: The estimates of the model parameters

Parameters Estimate SE
φ1 -0.1085 0.0632
θ1 -0.9520 0.0269
µt 0.0576 0.0677

In Figure 11, we plot the sample and theoretical ACF/PACF of our model. We can see that the sample
ACF’s are bit off from their theoretical values for all lags except 1, but it might be due the randomness. No
sample ACF surpasses the blue band which is the 95% confidence interval. We still think the sample and
theoretical ACF match well. Similarly, the sample and theoretical PACF match well.
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Figure 11: (a) The sample and theoretical ACF’s (b) The sample and theoretical PACF’s

7.2 Prediction

The time series plot in Figure 12(a) shows the predicted value (red points) of TSLA stock price for the next
ten trading days from November 3 and November 16, 2021. Our model predicts a monotonically increasing

10



trend probably because Xt is monotonically increasing during the last few days as well. The gray areas are
68% and 95% prediction intervals respectively.

To further specify the uncertainty and error of the prediction, we collect the actual close price of Tesla on
these ten days and plot them with the predictions and their prediction intervals in Figure 12(b).
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Figure 12: (a): The historical and predicted closed price (b): Predicted and actual close price

Figure 12(b) above displays the comparison between the forecasted and actual values of Tesla stock price in
the analyzed period. The 95% prediction interval captures the first four days well. However, our predictions
significantly deviate from the actual values because the actual close price sharply decreased from day three
to day five and did not increase to the original level. We find out that Elon Mask announced his interest to
sell ten percent of his holdings on the weekend of Nov. 6th. It might be the reason for the decrease.

8 Conclusion

While the ARIMA(1, 2, 1) × (0, 0, 0)[0] model works the best among all the models considered, there is no
guarantee that this is the true model underlying this dataset. Moreover, as we mentioned in the introduction,
our model indeed generates inaccurate predictions. Comparing our model prediction results to the actual
stock price changes, we observe that the model has failed to capture the trend and fluctuations in Tesla
stock price across time: in stark contrast to the overall increasing trend the model predicts, the stock price
dropped after Nov. 4th, 2021, and had only started to go up a week ago. Even if our model is ideal from
the point of view of statistical performance, it has failed to take the human factor into account (in this case,
Tesla stock prices slump after Elon Musk announced selling 10% of his holdings in the company earlier this
month). These conclusions from our time series analysis of Tesla could also apply to the overall stock market,
where statistical probability and human behavior are intertwined. Therefore, it is probably an unwise idea
to predict the stock price solely and blindly based on a purely statistical and mathematical model.

To design a better methodology of modeling the stock price, we can consider a multivariate time series
analysis. As mentioned before, we need to add in the human factors, which might be hard to quantified.
We can also add the company’s features that are outside of the stock market. For example, we can add the
daily number of tweets related to the company in some way. We exepct a multivariate time series model will
perform better than a univairate time series model.
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Code appendix

# Template source: https://github.com/alexpghayes/rmarkdown_homework_template
knitr::opts_chunk$set(
echo = TRUE, # show code
eval = FALSE, # don't eval code
warning = FALSE, # don't show warnings
message = FALSE, # don't show messages (less serious warnings)
cache = FALSE, # set to TRUE to save results from last compilation
fig.align = "center", # center figures
fig.height = 4

)
library(ggplot2)
library(patchwork)
library(astsa)
library(TSA)

##
## Attaching package: ’TSA’

## The following objects are masked from ’package:stats’:
##
## acf, arima

## The following object is masked from ’package:utils’:
##
## tar

library(forecast)

## Registered S3 method overwritten by ’quantmod’:
## method from
## as.zoo.data.frame zoo

## Registered S3 methods overwritten by ’forecast’:
## method from
## fitted.Arima TSA
## plot.Arima TSA

##
## Attaching package: ’forecast’

## The following object is masked from ’package:astsa’:
##
## gas

1



set.seed(153) # make random results reproducible

1 Abstract

2 Introduction

3 Data Description

# load data
stock = read.csv("data/TSLA.csv")
stock$Date = as.Date(stock$Date)

# Extract last 300 days
n = 300
t = 1:n
stock_300 = tail(stock, n)
stock_300 = stock_300[c('Date','Close')]
stock_300$t = t

4 Exploratory Data Analysis

# Figure 1

# Line plot of all the data
full_data <- ggplot(data = stock, aes(x = Date, y = Close)) +
geom_line() +
ylab("Close Price (Dollars)") +
ggtitle("(a)")

# Line plot of last 300 data
last_300 <- ggplot(data = stock_300, aes(x = Date, y = Close)) +
geom_line() +
ylab("Close Price (Dollars)") +
ggtitle("(b)")

full_data / last_300

# Figure 2

# Line plot of last 300 data
last_300 <- ggplot(data = stock_300, aes(x = Date, y = Close)) +
geom_line() +
ylab("Close Price (Dollars)") +
ggtitle("(a)") +
theme(text = element_text(size = 8)) +
guides(x = guide_axis(angle = 90))

2



# Line plot of last 300 data with square root transformation
last_300_sqrt <- ggplot(data = stock_300, aes(x = Date, y = Close)) +
geom_line() +
scale_y_sqrt() +
ylab("Close Price (Dollars)") +
ggtitle("(b)") +
theme(text = element_text(size = 8)) +
guides(x = guide_axis(angle = 90))

# Line plot of last 300 data with natural log transformation
last_300_log <- ggplot(data = stock_300, aes(x = Date, y = Close)) +
geom_line() +
scale_y_log10() +
ylab("Close Price (Dollars)") +
ggtitle("(c)") +
theme(text = element_text(size = 8)) +
guides(x = guide_axis(angle = 90))

last_300 + last_300_sqrt + last_300_log

5 Model Construction

5.1 Non-parametric Signal Model: exponential smoothing

# Figure 3

par(mfrow = c(1, 2), cex = 0.65, lwd = 0.8)

# exponential filter
alpha = 0.9
lag = 10
filter_weights = alphaˆ(1:lag)
filter_weights = filter_weights/sum(filter_weights)
filtered_stock = filter(stock_300$Close, filter_weights, sides = 1)

# Plot the original data and fitted values
plot(stock_300$t, stock_300$Close, type = 'l', main = "(a)",

xlab = "Time", ylab = "Close Price")
lines(stock_300$t, filtered_stock, col = 'red')

filtered_stock = na.omit(filtered_stock)
log_stock = stock_300$Close[-1:-(lag - 1)]
res = log_stock - filtered_stock
plot(res, main = "(b)", xlab = "Time", ylab = "Residuals")

# Figure 4

# seasonal differencing
diff_res = diff(res, lag = 5)
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par(cex = 0.65)
plot(diff_res, main = "(a)", ylab = "Differenced Data")

5.1.1 ARMA 1A: ARIMA(1, 0, 3) × (0, 0, 1)[5]

# Figure 5

acf2(diff_res)

# Model selection process for ARMA 1A

# six attemps will be enought since we don't want an overcomplicated model
attempt1 <- sarima(diff_res, p = 1, d = 0, q = 3, P = 0, D = 0, Q = 0, S = 5)
attempt2 <- sarima(diff_res, p = 1, d = 0, q = 3, P = 1, D = 0, Q = 0, S = 5)
attempt3 <- sarima(diff_res, p = 1, d = 0, q = 3, P = 0, D = 0, Q = 1, S = 5)
attempt4 <- sarima(diff_res, p = 1, d = 0, q = 3, P = 1, D = 0, Q = 1, S = 5)
attempt5 <- sarima(diff_res, p = 1, d = 0, q = 3, P = 2, D = 0, Q = 1, S = 5)
attempt6 <- sarima(diff_res, p = 1, d = 0, q = 3, P = 1, D = 0, Q = 2, S = 5)

start <- 186
cv_1 <- 0
cv_2 <- 0
cv_3 <- 0
cv_4 <- 0
cv_5 <- 0
cv_6 <- 0

# cross-validation using last 100 time points
for (i in 0:9) {

# train-val set split
train <- window(diff_res, end = start + i * 10)
val <- window(diff_res, start = start + i * 10 + 1, end = start + (i + 1) * 10)

# ARMA prediction
arma_1_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 3,

P = 0, D = 0, Q = 0, S = 5, plot = FALSE)$pred
arma_2_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 3,

P = 1, D = 0, Q = 0, S = 5, plot = FALSE)$pred
arma_3_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 3,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_4_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 3,

P = 1, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_5_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 3,

P = 2, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_6_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 3,

P = 1, D = 0, Q = 2, S = 5, plot = FALSE)$pred

# compute errors
cv_1 <- cv_1 + mean((arma_1_pred - val)ˆ2)
cv_2 <- cv_2 + mean((arma_2_pred - val)ˆ2)

4



cv_3 <- cv_3 + mean((arma_3_pred - val)ˆ2)
cv_4 <- cv_4 + mean((arma_4_pred - val)ˆ2)
cv_5 <- cv_5 + mean((arma_5_pred - val)ˆ2)
cv_6 <- cv_6 + mean((arma_6_pred - val)ˆ2)

}

cv_1 = cv_1 / 10
cv_2 = cv_2 / 10
cv_3 = cv_3 / 10
cv_4 = cv_4 / 10
cv_5 = cv_5 / 10
cv_6 = cv_6 / 10

AIC = c(attempt1$AIC,attempt2$AIC,attempt3$AIC,attempt4$AIC,attempt5$AIC,attempt6$AIC)
BIC = c(attempt1$BIC,attempt2$BIC,attempt3$BIC,attempt4$BIC,attempt5$BIC,attempt6$BIC)
AICc = c(attempt1$AICc,attempt2$AICc,attempt3$AICc,

attempt4$AICc,attempt5$AICc,attempt6$AICc)
cv = c(cv_1,cv_2,cv_3,cv_4,cv_5,cv_6)

which.min(AIC)
which.min(BIC)
which.min(AICc)
which.min(cv)

# Attempt 3 has lowest AIC,BIC,AICc, and CV errors

# Figure 6
model_1A <- sarima(diff_res, p = 1, d = 0, q = 3, P = 0, D = 0, Q = 1, S = 5)

5.1.2 ARMA 1B: ARIMA(1, 0, 1) × (0, 0, 1)[5]

# Model Selection Process for ARMA 1B
# model selected by auto.arima
auto.arima(diff_res)

attempt1 <- sarima(diff_res, p = 2, d = 0, q = 2, P = 0, D = 0, Q = 0, S = 5)
# does not pass the Ljung-box test

attempt2 <- sarima(diff_res, p = 2, d = 0, q = 2, P = 1, D = 0, Q = 0, S = 5)
# does not pass the Ljung-box test

attempt3 <- sarima(diff_res, p = 2, d = 0, q = 2, P = 0, D = 0, Q = 1, S = 5)
attempt4 <- sarima(diff_res, p = 1, d = 0, q = 2, P = 0, D = 0, Q = 1, S = 5)
attempt5 <- sarima(diff_res, p = 1, d = 0, q = 1, P = 0, D = 0, Q = 1, S = 5)
attempt6 <- sarima(diff_res, p = 0, d = 0, q = 1, P = 0, D = 0, Q = 1, S = 5)

start <- 186
cv_1 <- 0
cv_2 <- 0
cv_3 <- 0
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cv_4 <- 0
cv_5 <- 0
cv_6 <- 0

# cross-validation using last 100 time points
for (i in 0:9) {

# train-val set split
train <- window(diff_res, end = start + i * 10)
val <- window(diff_res, start = start + i * 10 + 1, end = start + (i + 1) * 10)

# ARMA prediction
arma_1_pred <- sarima.for(train, n.ahead = 10, p = 2, d = 0, q = 2,

P = 0, D = 0, Q = 0, S = 5, plot = FALSE)$pred
arma_2_pred <- sarima.for(train, n.ahead = 10, p = 2, d = 0, q = 2,

P = 1, D = 0, Q = 0, S = 5, plot = FALSE)$pred
arma_3_pred <- sarima.for(train, n.ahead = 10, p = 2, d = 0, q = 2,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_4_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 2,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_5_pred <- sarima.for(train, n.ahead = 10, p = 1, d = 0, q = 1,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_6_pred <- sarima.for(train, n.ahead = 10, p = 0, d = 0, q = 0,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred

# compute errors
cv_1 <- cv_1 + mean((arma_1_pred - val)ˆ2)
cv_2 <- cv_2 + mean((arma_2_pred - val)ˆ2)
cv_3 <- cv_3 + mean((arma_3_pred - val)ˆ2)
cv_4 <- cv_4 + mean((arma_4_pred - val)ˆ2)
cv_5 <- cv_5 + mean((arma_5_pred - val)ˆ2)
cv_6 <- cv_6 + mean((arma_6_pred - val)ˆ2)

}

cv_1 = cv_1 / 10
cv_2 = cv_2 / 10
cv_3 = cv_3 / 10
cv_4 = cv_4 / 10
cv_5 = cv_5 / 10
cv_6 = cv_6 / 10

AIC = c(attempt1$AIC,attempt2$AIC,attempt3$AIC,attempt4$AIC,attempt5$AIC,attempt6$AIC)
BIC = c(attempt1$BIC,attempt2$BIC,attempt3$BIC,attempt4$BIC,attempt5$BIC,attempt6$BIC)
AICc = c(attempt1$AICc,attempt2$AICc,attempt3$AICc,

attempt4$AICc,attempt5$AICc,attempt6$AICc)
cv = c(cv_1,cv_2,cv_3,cv_4,cv_5,cv_6)

which.min(AIC)
which.min(BIC)
which.min(AICc)
which.min(cv)

# Attempt 5 have lowest AIC, BIC, and AICc and Attempt 3 has lowest CV error. However,
# the difference between the CV errors of attempt 3 and 5 is only 0.2, so we choose
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# attempt 5

# Figure 7

model_1B <- sarima(diff_res, p = 1, d = 0, q = 1, P = 0, D = 0, Q = 1, S = 5)

5.2 Non-parametric Signal Model: second-order differencing

# Figure 8

par(mfrow = c(1, 2), cex = 0.65, lwd = 0.5)

# first order differencing
stock_d = diff(stock_300$Close)
# second order differencing
stock_dd = diff(stock_d)

plot(stock_d, type = 'l', main = "(a)", ylab = "Differenced Data")
plot(stock_dd, type = 'l', main = "(b)", ylab = "Differenced Data")

5.2.1 ARMA 2A: ARIMA(1, 0, 1) × (0, 0, 0)[0]

# Figure 9

acf2(stock_dd)

# Figure 10

# model diagnostics plots of ARMA 2A
auto.arima(stock_dd, start.q = 1)

model_2A <- sarima(stock_dd, p=1, d=0, q=1, P=0, D=0, Q=0, S=0)

5.2.2 ARMA 2B:

# Model selection process for ARMA 2B

attempt1 <- sarima(stock_dd, p = 4, d = 0, q = 0, P = 0, D = 0, Q = 0, S = 0)
# does not pass the Ljung-box test

attempt2 <- sarima(stock_dd, p = 5, d = 0, q = 0, P = 0, D = 0, Q = 0, S = 0)
# does not pass the Ljung-box test

attempt3 <- sarima(stock_dd, p = 6, d = 0, q = 0, P = 0, D = 0, Q = 0, S = 0)
attempt4 <- sarima(stock_dd, p = 4, d = 0, q = 1, P = 0, D = 0, Q = 0, S = 0)
attempt5 <- sarima(stock_dd, p = 5, d = 0, q = 1, P = 0, D = 0, Q = 0, S = 0)
attempt6 <- sarima(stock_dd, p = 6, d = 0, q = 1, P = 0, D = 0, Q = 0, S = 0)
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start <- 200
cv_1 <- 0
cv_2 <- 0
cv_3 <- 0
cv_4 <- 0
cv_5 <- 0
cv_6 <- 0

# cross-validation using last 100 time points
for (i in 0:9) {

# train-val set split
train <- window(diff_res, end = start + i * 10)
val <- window(diff_res, start = start + i * 10 + 1, end = start + (i + 1) * 10)

# ARMA prediction
arma_1_pred <- sarima.for(train, n.ahead = 10, p = 4, d = 0, q = 0,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred
arma_2_pred <- sarima.for(train, n.ahead = 10, p = 5, d = 0, q = 0,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred
arma_3_pred <- sarima.for(train, n.ahead = 10, p = 6, d = 0, q = 0,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred
arma_4_pred <- sarima.for(train, n.ahead = 10, p = 4, d = 0, q = 1,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred
arma_5_pred <- sarima.for(train, n.ahead = 10, p = 5, d = 0, q = 1,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred
arma_6_pred <- sarima.for(train, n.ahead = 10, p = 6, d = 0, q = 1,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred

# compute errors
cv_1 <- cv_1 + mean((arma_1_pred - val)ˆ2)
cv_2 <- cv_2 + mean((arma_2_pred - val)ˆ2)
cv_3 <- cv_3 + mean((arma_3_pred - val)ˆ2)
cv_4 <- cv_4 + mean((arma_4_pred - val)ˆ2)
cv_5 <- cv_5 + mean((arma_5_pred - val)ˆ2)
cv_6 <- cv_6 + mean((arma_6_pred - val)ˆ2)

}

cv_1 = cv_1 / 10
cv_2 = cv_2 / 10
cv_3 = cv_3 / 10
cv_4 = cv_4 / 10
cv_5 = cv_5 / 10
cv_6 = cv_6 / 10

AIC = c(attempt1$AIC,attempt2$AIC,attempt3$AIC,attempt4$AIC,attempt5$AIC,attempt6$AIC)
BIC = c(attempt1$BIC,attempt2$BIC,attempt3$BIC,attempt4$BIC,attempt5$BIC,attempt6$BIC)
AICc = c(attempt1$AICc,attempt2$AICc,attempt3$AICc,

attempt4$AICc,attempt5$AICc,attempt6$AICc)
cv = c(cv_1,cv_2,cv_3,cv_4,cv_5,cv_6)

which.min(AIC)
which.min(BIC)

8



which.min(AICc)
which.min(cv)

# Attempt 4 have lowest AIC, BIC, and AICc and Attempt 1 has lowest CV error. However,
# Attempt 1 has a very bad performance of Ljung-box statistic. Thus, we will choose attempt 4

# model diagnostics plots of ARMA 2B
model_2B <- sarima(stock_dd, p=4, d=0, q=1, P=0, D=0, Q=0, S=0)

6 Model Comparision and Selection

# Here we compute the cross-validation error of each model. We only use the last one hundred
# data points, which is 1/3 of the entire data, to select the validation set. There are
# ten validation sets, and each of them contains ten data points. The whole process is
# very similar to the classical k-fold cross-validation. In the first iteration, the training
# set contains the time points 1:200, and the validation set contains the time points 201:210.
# Then, in the second iteration, the training set contains the time points 1:210, and
# the validation set contains the time points 211:220. We repeat the similar process, and in
# the last iteration, the training set contains the time points 1:290, and the validation set
# contains the time points 291:300.
start <- 200
cv_1A <- 0
cv_1B <- 0
cv_2A <- 0
cv_2B <- 0

for (i in 0:9) {
# train-val set split
train <- window(stock_300$Close, end = start + i * 10)
val <- window(stock_300$Close, start = start + i * 10 + 1, end = start + (i + 1) * 10)

# get stationary residuals
filtered_train = filter(train, filter_weights, sides = 1)
filtered_train = na.omit(filtered_train)
cut_train <- train[-1:-(lag - 1)]
exp_res = cut_train - filtered_train

# exponential smoothing prediction
exp_pred = numeric(10)
values = tail(train, 10) # store the values for prediction
for (i in 1:10){
exp_pred[i] = sum(tail(values, 10) * rev(filter_weights))
values <- append(values, exp_pred[i])

}

# ARMA prediction
arma_1A_pred <- sarima.for(exp_res, n.ahead = 10, p = 1, d = 0, q = 3,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred
arma_1B_pred <- sarima.for(exp_res, n.ahead = 10, p = 1, d = 0, q = 1,

P = 0, D = 0, Q = 1, S = 5, plot = FALSE)$pred
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# total prediction
pred_1A <- exp_pred + arma_1A_pred
pred_1B <- exp_pred + arma_1B_pred
pred_2A <- sarima.for(train, n.ahead = 10, p = 1, d = 2, q = 1,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred
pred_2B <- sarima.for(train, n.ahead = 10, p = 4, d = 2, q = 1,

P = 0, D = 0, Q = 0, S = 0, plot = FALSE)$pred

# compute errors
cv_1A <- cv_1A + mean((pred_1A - val)ˆ2)
cv_1B <- cv_1B + mean((pred_1B - val)ˆ2)
cv_2A <- cv_2A + mean((pred_2A - val)ˆ2)
cv_2B <- cv_2B + mean((pred_2B - val)ˆ2)

}

cv_1A = cv_1A / 10
cv_1B = cv_1B / 10
cv_2A = cv_2A / 10
cv_2B = cv_2B / 10

# Table 1

index = c(1, 2, 3, 4)
model = c("Expo. smoothing + ARMA 1A", "Expo. smoothing + ARMA 1B",

"2nd-order Diff. + ARMA 2A","2nd-order Diff. + ARMA 2B")
cves = c(cv_1A, cv_1B, cv_2A, cv_2B)
aic = c(model_1A$AIC,model_1B$AIC,model_2A$AIC,model_2B$AIC)
aicc = c(model_1A$AICc,model_1B$AICc,model_2A$AICc,model_2B$AICc)
bic = c(model_1A$BIC,model_1B$BIC,model_2A$BIC,model_2B$BIC)
s <- data.frame(Index = index, "Model" = model, "CV error"=cves,

"AIC"=aic,"AICc"=aicc,"BIC"=bic)
knitr::kable(s, caption = "Criterion values of each model")

# Figure 11

par(mfrow = c(1, 2), cex = 0.7)
model_2A.acf=ARMAacf(ar=c(-0.1085), ma=c(-0.9520), lag.max = 20, pacf=FALSE)
acf(as.vector(stock_dd), lag.max=20, main = "(a)")
points(0:20, model_2A.acf, col='red')

model_2A.pacf=ARMAacf(ar=c(-0.1085), ma=c(-0.9520), lag.max = 21, pacf=TRUE)
pacf(as.vector(stock_dd), lag.max=20, main = "(b)")
points(0:20, model_2A.pacf, col='red')

7 Final Model

7.1 Model Expression

# Table 2
model_2A$ttable
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7.2 Prediction

# Code for plotting Figure 12

par(mfrow = c(1, 2), cex = 0.7)
close = stock_300$Close
model_forecast <- sarima.for(close, n.ahead = 10, p = 1, d = 2, q = 1,

P = 0, D = 0, Q = 0, S = 0)
title(main = "(a)")

# compute the prediction intervals
model_pred <- model_forecast$pred
model_se <- model_forecast$se
lower <- c()
upper <- c()
for (i in 1:10){

lower[i] <- model_pred[i] - 1.96 * model_se[i]
upper[i] <- model_pred[i] + 1.96 * model_se[i]

}

# collect actual data
stock_new = read.csv("data/TSLA_new.csv")
stock_new_true <- tail(stock_new, 10)
stock_new_true = stock_new_true[c('Date','Close')]
df <- data.frame(stock_new_true$Date, model_pred, stock_new_true$Close, lower, upper)
colnames(df)=c("Time", "Prediction", "True", "Lower", "Upper")

# plot the prediction, actual value, and prediction interval
plot(1:10, xlab = "Time", ylab = "Stock Price ($)", ylim=c(1000,1550), main = "(b)",

sub = "(Nov 3, 2021 - Nov 16, 2021)",
# Titles in italic and bold
font.main=4, font.lab=4, font.sub=4,
# Change font size
cex.main=1.2, cex.lab=1, cex.sub=0.75)

polygon(c(rev(1:10), 1:10), c(rev(df[ ,4]), df[ ,5]), col = 'grey85', border = NA)
lines(1:10, df[ ,4], lty = 'dashed', col = 'gray')
lines(1:10, df[ ,5], lty = 'dashed', col = 'gray')
lines(1:10, df[ ,2], type = "l", pch = 19, col = "red")
points(1:10, stock_new_true$Close, pch = "*", col = "blue")
lines(1:10, stock_new_true$Close, pch = 18, col = "blue", type = "b", lty = 2)
legend("topleft", legend=c("Prediction", "Actual"),

col=c("red", "blue"), lty = 1:2, cex=0.8)
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