
Spring 2024 STAT 541 Final Project: Sequential
Investment and Universal Portfolio Algorithms

Wenhao Pan
Department of Statistics

University of Washington
Seattle, WA, 98105
wenhaop@uw.edu

1 Introduction

1.1 Setting

We consider a sequential investment problem in a market with d ≥ 2 stocked explained by Orabona
[2019]. We observe a sequence of arbitrarily chosen nonnegative market gains vectors w1, . . . , wT ∈
Rd

≥0. For example, one way to define wt for any time t = 1, . . . , T is that i-th coordinate of wt

is the ratio of the adjusted close price of i-th stock at time t to that at time t − 1, i.e., wt,i =
adjust price at time t

adjust price at time t − 1 for all i = 1, . . . , d, t = 1, . . . , T . An investment strategy for time t is specified
by a vector xt ∈ Rd such that 0 ≤ xt ≤ 1 and ||x||1 = 1. i-th coordinate of xt specifies the fraction
of the wealth allocated for i-th stock at time t. With the definition of wt above for any time t, xt,i

represents the fractions of the wealth at time t− 1 to buy i-th as soon as the market opens and sell
all the shares right before the market closes at time t. With initial health of $1, after T rounds, our
wealth WealthT is

WealthT =

d∑
i=1

WealthT−1wT,ixT,i = WealthT−1w
⊤
T xT =

T∏
t=1

w⊤
t xt.

We aim to design or implement different portfolio selection algorithms that select x1, . . . , xt to
maximize WT .

1.2 Regret

Like bandit algorithms, we can define the regret of a portfolio selection algorithm by comparing its
wealth accumulation against the best constant rebalanced portfolio (BCRP). Constant means that the
allocation fraction of wealth at each stock is the same at each time, and best means that such fraction
u∗ maximizes WealthT (u) =

∏T
t=1 w

⊤
t u.

Since wealth accumulation is multiplicative, we define the regret of any portfolio selection algorithm
after T rounds as the ratio of BCRP’s wealth to the algorithm’s.

RegretT =
WealthT (u∗)

WealthT
=

T∏
t=1

w⊤
t u∗

w⊤
t xt

.

2 Algorithms

Next, we describe the portfolio selection algorithms we implemented for numerical experiments.

Preprint. Under review.

Algorithm 1 F-Weighted Portfolio Selection
Require: F : ∆d−1 → R probability density function

1: Wealth0 = 1
2: for t = 1 to T do
3: Set xt =

∫
∆d−1 xWealtht−1(x)dF (x)∫
∆d−1 Wealtht−1(x)dF (x)

4: Receive wt ∈ Rd
≥0

5: Wealtht = Wealtht−1 · w⊤
t xt

6: end for

2.1 F-Weighted Portfolio Selection

Cover [1991] proposed the F-weighted portfolio selection algorithm described in Algorithm 1. ∆d−1

stands for a d-dimensional probability simplex. Example choices for F are uniform distribution
and Dirichletd (1, . . . , 1), and we use the uniform distribution. The allocation xtat each time t is the
weighted average of all possible constant rebalanced portfolios by its generated wealth until time
t− 1 and its probability under F .

2.2 Constant Rebalanced Portfolio

Algorithm 2 Constant Rebalanced Portfolio
1: Wealth0 = 1
2: for t = 1 to T do
3: Set xt = (1/d, . . . , 1/d)
4: Receive wt ∈ Rd

≥0

5: Wealtht = Wealtht−1 · w⊤
t xt

6: end for

The constant rebalanced portfolio algorithm (CRP) is explained in Algorithm 2.

2.3 Best Constant Rebalanced Portfolio

BCRP is identical to CRP (Algorithm 2) except that xt = u∗ as explained in Section 1.2.

2.4 Random Rebalanced Portfolio

The random rebalanced portfolio algorithm is identical to CRP (Algorithm 2) except that xt ∼
Dirichletd (1, . . . , 1). Since Dirichletd (1, . . . , 1) is completely uninformative, we uniformly ran-
domly select the rebalanced portfolio at each time.

2.5 All-in Rebalanced Portfolio

The all-in rebalanced portfolio algorithm is identical to CRP (Algorithm 2) except that xt is uniformly
randomly drawn from {e1, e2, . . . , ed} where ei is i-th standard basis vector for i = 1, . . . , d.

3 Experiments

To test and compare the performance of all five algorithms on real-world data, we implement them
in Python and run them on the real stock market data with significant help from https://github.
com/Marigold/universal-portfolios and yfinance package. The code is attached at the end
of the report.

3.1 Stock Market Data

We use the adjusted close prices of FAANG companies (Meta, Amazon, Apple, Netflix, Google) in
the last five years (from 06/02/2019 to 06/02/2024). The stock prices are plotted in Figure 1.

2

https://github.com/Marigold/universal-portfolios
https://github.com/Marigold/universal-portfolios

Figure 1: Adjusted close prices of FAANG companies from 06/02/2019 to 06/02/2024

3.2 Result and Analysis

The result of running five algorithms explained in Section 2 on the data plotted in Figure 1 is shown in
Figure 2. The most interesting observation might be that the all-in algorithm, which seems nonsense,
manages to double our initial wealth after five years. This observation could be explained by the
general uprising trend of FAANG’s stock price, except for the well-known decline in 2022, as
observed in Figure 1. The next interesting observation is that the random algorithm performs at least
as well as CRP and F-weighted algorithms. Again, this could be explained by the fact mentioned
before. Thus, a natural future extension is to run the algorithms on the stocks that are more stable.

Figure 2: Wealth accumulation of five algorithms.

References
Thomas M Cover. Universal portfolios. Mathematical finance, 1(1):1–29, 1991.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

3

%matplotlib inline
%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = 'svg'

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from pandas_datareader import data as pdr
import yfinance as yf

from universal import algos
from universal.algo import Algo
from universal.algos import *

sns.set_context("notebook")
plt.rcParams["figure.figsize"] = (16, 8)

ignore logged warnings
import logging
logging.getLogger().setLevel(logging.ERROR)

data = yf.download(["META", "AMZN", "AAPL", "NFLX", "GOOG"], start="2019-06-02", en
data = yf.download(["META", "AMZN", "NFLX", "GOOG"], start="2019-06-02", end="202
adj_close = data["Adj Close"]
data.head()

adj_close.plot()
plt.xlabel("Date")
plt.ylabel("Adj Close")
plt.savefig("price.png")
plt.show()

class Random(Algo):
 """Draw the weights from a uniform Dirichlet distribution"""
 PRICE_TYPE = "ratio"

 def __init__(self, seed):
 super().__init__()
 self.rng = np.random.default_rng(seed)

 def step(self, x, last_b, history=None):
 d = len(x)
 w = self.rng.dirichlet(np.ones(d))
 return w

class AllIn(Algo):
 """Uniformly randomly all in >:)"""
 PRICE_TYPE = "ratio"

 def __init__(self, seed):

In []:

In []:

In []:

In []:

 super().__init__()
 self.rng = np.random.default_rng(seed)

 def step(self, x, last_b, history=None):
 d = len(x)
 idx = self.rng.choice(np.arange(d))
 w = np.zeros(d)
 w[idx] = 1
 return w

BCRP_algo = algos.BCRP()
BCRP_result = BCRP_algo.run(adj_close)

print(BCRP_result.summary())
BCRP_result.plot(assets=False)
BCRP_result.plot_decomposition()

CRP_algo = algos.CRP()
CRP_result = CRP_algo.run(adj_close)

print(CRP_result.summary())
CRP_result.plot(assets=False)
CRP_result.plot_decomposition()

UP_algo = algos.UP(eval_points=1e6)
UP_result = UP_algo.run(adj_close)

print(UP_result.summary())
UP_result.plot(assets=False)
UP_result.plot_decomposition()

seed = 541

Random_algo = Random(seed)
Random_result = Random_algo.run(adj_close)

print(Random_result.summary())
Random_result.plot(assets=False)
Random_result.plot_decomposition()

seed = 541

AllIn_algo = AllIn(seed)
AllIn_result = AllIn_algo.run(adj_close)

print(AllIn_result.summary())
AllIn_result.plot(assets=False)
AllIn_result.plot_decomposition()

fig, ax = plt.subplots()
ax.plot(np.arange(len(BCRP_result.equity)), BCRP_result.equity, label="BCRP")
ax.plot(np.arange(len(CRP_result.equity)), CRP_result.equity, label="CRP")
ax.plot(np.arange(len(UP_result.equity)), UP_result.equity, label="F-weighted")
ax.plot(np.arange(len(Random_result.equity)), Random_result.equity, label="Random")

In []:

In []:

In []:

In []:

In []:

In []:

ax.plot(np.arange(len(AllIn_result.equity)), AllIn_result.equity, label="All In")
ax.set_xlabel("Time")
ax.set_ylabel("Total Wealth")
ax.legend()
fig.show()
plt.savefig("result.png")

	Introduction
	Setting
	Regret

	Algorithms
	F-Weighted Portfolio Selection
	Constant Rebalanced Portfolio
	Best Constant Rebalanced Portfolio
	Random Rebalanced Portfolio
	All-in Rebalanced Portfolio

	Experiments
	Stock Market Data
	Result and Analysis

